美國聯邦第九區巡迴上訴法院,於2009年2月20日判決中維持下級審見解,認定『禁止暴力電玩法案』係違反憲法所保護的言論自由。系爭法案於2005年由加州國會通過,並由州長Arnold Schwarzenegger所簽署批准。根據該法案規定,禁止販售或出租所謂『特別殘酷、極端邪惡或道德敗壞(especially heinous, cruel or depraved)』的暴力電玩給未滿18歲的未成年人;符合法條所描述之暴力電玩並應該在包裝盒上加註除現行ESRB分級標誌以外的特別標示(18禁);且賦予零售商於販賣暴力電玩時,有檢查顧客年齡之義務,違者將可處1000美元罰款。
聯邦法院法官認為,被告(加州政府)無法證明『暴力電玩』會影響青少年心理及精神方面的健康,或者出現反社會或激進的行為舉止;被告也無法證明透過立法禁止的手段,能有效達到法案所宣稱保護未成年人的立法目的;法院也認為,系爭條文規定過於模糊,並未能說明暴力電玩之判斷標準。
原告Video Software Dealers Association 和Entertainment Software Association表示,要達到加州政府所宣稱的保護未成年人的立法目的,應從加強既有ESRB分級制度的教育宣導、落實零售商遵守分級制度以及透過父母的管教監督等方式著手,而非增加不適當的內容審查機制。然而,支持該法案者則主張,禁止暴力電玩如同禁止對未成年人散佈色情內容一樣(最高法院認為政府禁止對未成年人散佈色情內容並未違憲),本案被告加州州長Schwarzenegger也表示將上訴到底。
日前在德國也出現修正刑法,將販賣或散佈暴力電玩入罪之提議,在暴力電玩分級制度所引起的爭議日益擴大之際,各國相關作法及其所引起之爭議,或許值得我國主管機關重新檢討「電腦軟體分級辦法」之借鏡參考。
國際能源總署(International Energy Agency, IEA)於2022年12月6日發布2022年再生能源報告(Renewable 2022),其整理和分析各國之再生能源政策和市場發展現況,並預測再生能源於2022至2027年間在電力、交通和供熱的部署情況,同時提出相關產業在發展上的主要障礙。報告重點如下: (1)能源危機加速再生能源成長 烏俄戰爭所導致之能源危機,迫使各國加速其推動再生能源之政策,例:中國的十四五年規劃、歐盟的REPowerEU計畫,以及美國的降低通膨法案(Inflation Reduction Act)等等,將使2022至2027年間全球的再生能源裝置容量提升約2400GW,等同於中國目前電力的總量,其中歐盟、中國、美國和印度在未來五年間所建置之再生能源,將是過往五年的兩倍;而未來五年間全球成長之電力裝置容量中,再生能源的部分將占90%以上,並且,其總裝置容量將於2025年超越燃煤,成為最大宗的電力來源,其中,又將以太陽光電和風電為主要的發電方式。 (2)各國再生能源法制政策仍有進步空間 國家再生能源法制的不確定性、經濟措施不足、許可程序繁冗,以及電網設施的缺乏,都將阻礙再生能源的發展,若能消除該些障礙,包含簡化許可程序、改善競標方式及提升誘因機制,全球再生能源的成長速率將能再提升25%。 (3)再生能源轉換為氫氣之應用將大幅提升 隨著超過25個國家的氫能政策,全球用於電解產氫的風電和太陽光電裝置容量於2022至2027年間將達50GW,提升近100倍,而主要發展之國家為中國,其次則是澳洲、智利和美國。 (4)生質能的需求持續增加並需開發更多元的原料來源 國際對於生質能的需求將持續增加,在未來五年裡預計成長22%。其中,廢棄物和殘渣的利用是生質燃料重要的一環,至2027年時將有約三分之一的生質燃料來自該兩者,而在燃料需求擴增並造成供應壓力的情況下,則有待政策的推動和技術的研發,以開發更多元且永續的生質能原料。 (5)再生能源供熱的發展程度仍無法取代化石燃料 由於越來越多的供熱來源是依賴電力,而電力中再生能源的比例亦不斷提升,因此,2022至2027年間的再生能源供熱將會提升三分之一,而亦有部份原因是來自政策的推動,尤其是遭遇天然氣危機的歐盟。不過,依目前再生能源供熱技術的發展程度,還無法追上傳統化石燃料所能供熱的數量。
簡析德國自動駕駛與車聯網發展策略 中國大陸布局推動智慧城市建設,發布「2013年測繪地理信息藍皮書」中國大陸近年來積極布局智慧城市建設,並逐步將智慧城市的概念發展為具體的地理空間,2014年2月14日智能系統國家測繪地理信息局測繪發展研究中心--社會科學文獻出版社,發布2013年測繪地理信息藍皮書—《智慧中國地理空間智能體系研究報告(2013)》(以下簡稱「藍皮書」),揭示提出打造2030年智慧中國地理空間智能體系的具體目標。係以巨量地理資訊資源為基礎,透過新一代網際網路,以智慧聯網(Internet of Things, IoT)、雲端計算(Cloud Computing)和巨量資料(Big Data),實現地理資訊的智慧化應用,並透過相關政策形成以地理資訊獲取、處理及應用為主的雲端產業鏈。 自2013年起,中國大陸國家測繪地理信息局每年選擇10個城市作為智慧城市建設試點,目前已有太原、廣州、徐州、臨沂、鄭州等試點城市完成初步項目,正進行設計論證及完善基礎設施等工作。該局副局長李維森並指出,大陸將在2015年全面完成數字城市地理空間框架建設,並於此基礎升級為智慧城市。 中國大陸國土資源部亦從2013年底配合「十二五規劃」逐步推動以雲端運算、巨量資料以及智慧聯網等新一代資通訊技術所建構之「國土雲」,以滿足國土資源資訊利用、查詢、監管的需求,並透過資訊數位化,為其他領域重大工作提供基礎資訊。 從中國大陸近年來對於國家地理資源之蒐集、調查與管理手段觀察,可探知其對於國土資訊產業發展的高度重視,並欲在維護國土安全的前提下,加強推動有助於促進資訊流通效率以及資源廣泛利用的公共服務平台建設;對於此等具有國家安全戰略意義之新興科技領域,目前仍以國家投資為主要推動手段,後續相關法規發展殊值注意。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。