美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。 新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。 明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。
提升晶圓競爭力,維護國家領導性:2020年《美國晶圓代工業法案》鑒於中國大陸製造微電子之能力,日益趨近美國;為建立美國在科技領域之領導地位,與振興全球微電子產業。以美國參議員Charles E. Schumer和Tom Bryant Cotton為首,於2020年6月提出《美國晶圓代工業法案》(American Foundries Act)。法案重點為:(1)資助發展微電子產業與研發設備;(2)創建、擴展與現代化提升微電子產業之設備,與維護國家安全之能力;(3)增加預算確保美國在微電子產業之領先地位;(4)訂定國家微電子之研發計畫;(5)建置產業諮詢委員會;(6)訂定多邊出口控制計畫;(7)禁止資金與國外競爭者相關;(8)限制計畫、承包商、分包商,和預算來源為國防部者採購國內微電子設計與代工服務。 該法案授權國防部長及國家安全局長基於國家安全之需求,由國防部資助微電子產業的建構、研究與發展。資助、輔助微電子產業在製造、裝備、檢測、外觀與研發上的發展,以及在採購設備和智慧財產權上的現代化。此外,美、中的競爭亦延伸至國家關鍵科技保護的面向。該法案規定倘微電子公司在敏感技術的研發,技術的許可、轉讓或投資,係中國政府或其他國際競爭者所有、受其控制或影響,美國政府將收回對該公司之資助,並禁止其參與計畫。 在商業製造上,亦須降低風險,包含對微電子研發的分類和出口管制,確認管理流程,以及減輕供應鏈的安全風險;且須注意在國家安全方面的要求。並為確保美國在微電子產業上的領導地位,國家經費授權國防高階研究計畫機構(the Defense Advanced Research Projects Agency)拓展電子復興計畫(the Electronics Resurgence Initiative),發展具破壞性的微電子科技,包含發展足以支持國產微電子企業的研究量能;並由國家科學基金會(the National Science Foundation)、能源局(the Department of Energy)與國家標準技術研究所(National Institute of Standards and Technology),負責執行微電子的科學研究與開發。
歐盟資通安全局公布《提升歐盟軟體安全性》研究報告歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年4月25日以歐盟網路安全驗證框架(EU cybersecurity certification framework)檢視現行安全軟體開發及維護之方式與標準,並公布《提升歐盟軟體安全性》(Advancing Software Security in the EU)研究報告。歐盟資通安全局後續將以該研究報告協助產品、服務及軟體開發之驗證,並期望能夠成為執行歐盟網路安全驗證框架相關利害關係人之非強制性參考文件之一。 本報告指出由於安全軟體已普遍應用於日常商品與服務當中,但目前針對軟體安全事故並無相對應之安全守則及技術,故為提高軟體安全層級並緩解目前已知之軟體安全威脅,應針對安全軟體開發及維護進行規範並驗證。 報告中除了針對軟體安全提出其應具備之要素、概述現行安全軟體開發方式及標準之缺點外,亦提出若以歐盟網路安全驗證框架針對軟體開發方式進行驗證時可考量之一些實際做法,包括: 已驗證之資訊與通訊科技(Information and Communication Technology, ICT)產品、服務或流程供應商或製造商,針對資料庫之部署及維護,除探討防止資料洩漏之方式外,尚應考量產品、服務或流程驗證過程中,進行資料共享會面臨之安全威脅以及緩解之方式。 應與歐洲標準組織(European Standards Organizations, ESOs)及標準制定組織(Standards Developing Organization, SDOs)合作。 建立一些針對軟體開發、維護及操作準則以補充現有歐盟網路安全驗證方案(EU cybersecurity certification schemes)。 針對現行不一致之軟體開發及維護規範,應考量建立較寬鬆之合規性評估(conformity assessment)標準。 借鏡現有經驗和專業知識,促進歐盟網絡安全驗證框架之適用。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。