美國國家健康研究院提出幹細胞研究指導方針草案

  美國新任總統歐巴馬上台後,終結小布希政府多年來的人類幹細胞研究補助禁令,於今(2009)年3月9日發佈了13505號執行命令(Executive Order)。此執行命令不僅擴大了可接受政府補助之人類幹細胞研究範圍,亦要求美國國家健康研究院(National Institutes of Health, NIH)檢視現存相關指導方針,並於120天內發佈新的規範。因此,NIH隨後於4月23日提出了幹細胞研究指導方針草案。

 

  草案除將持續補助使用成體幹細胞及誘導多能幹細胞之研究外,針對過往無法接受補助之幹細胞類型(即原本為生殖目的之體外受精卵所衍生之幹細胞)也解除了禁令,使得美國科學家可取得更多樣及不受汙染的人類幹細胞。另外,草案也就幹細胞取得之告知後同意條約與流程做詳細的說明。最後,源自於體細胞核移轉(somatic cell nuclear transfer)、單性生殖(parthenogenesis)或為研究目的於體外所製造之胚胎等範疇之幹細胞,將無法接受草案的補助。

 

  雖然草案大幅開放可受補助之範圍,但仍有些使用合乎規定之幹細胞之研究無法接受到補助,故對利害關係人來說,還是要注意草案所規定之限制條件。目前草案仍處於公眾評論之階段,預計不久之後將可正式生效。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家健康研究院提出幹細胞研究指導方針草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3040&no=67&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

紐西蘭通過網路侵權三振法案

  紐西蘭於今年4月14日通過遏制線上非法檔案分享的著作權修正法案。甫通過的的修正法案廢除並取代了紐西蘭1994年著作權法92A條款。新法賦予著作權人可以向網路服務提供者提交侵權使用者的侵權證據,並要求網路服務提供者通知該使用者停止侵權行為之權利。若侵權使用者在三次通知後仍未停止侵權行為,則著作權人可以在著作權法院提出損害賠償請求,此一請求賠償金額最高可達1萬5千元紐幣。   而備受爭論的斷網措施,在本次修正法案中暫時被保留而未立刻生效,待觀察前述通知與損害補償機制是否能有效的遏制網路侵權行為,若前述機制仍無法達成制止侵權行為的效果時,斷網措施條款將由議會決定生效適用,賦予著作權人可以向地方法院請申請命令,強制網路服務提供者中止該侵權帳戶的網路服務,中止期間最高可達六個月。   該法案是在2010年2月23日在紐西蘭國會中第一次被提出。日前通過後,將於今年9月1日正式生效,惟手機網路服務部分,則延後於2013年10月才會納入適用範圍。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國聯邦貿易委員會(FTC)提議加強兒童隱私規則,以進一步限制企業將兒童的資訊用來營利

美國聯邦貿易委員會(Federal Trade Commission, FTC)於2023年12月對《兒童線上隱私保護規則》(Children's Online Privacy Protection Rule, COPPA Rule)提出修法草案,並於2024年1月11日公告60日供公眾意見徵詢。 FTC依據兒童線上隱私保護法(Children's Online Privacy Protection Act, COPPA)第6502節授權,訂定COPPA Rule,並於2000年通過生效,要求網站或提供線上服務的業者在蒐集、使用或揭露13歲以下兒童的個人資訊之前必須通知其父母,並獲得其同意。本次提議除了限制兒童個人資訊的蒐集,亦限制業者保留此些資訊的期間,並要求他們妥善保存資料,相關規定如下: (1)置入固定式廣告時需經認證:COPPA所涵蓋的網站和線上服務業者現在需要獲得兒童父母的同意並取得家長的授權才能向第三方(包括廣告商)揭露資訊,除非揭露資訊是線上服務所不可或缺之部分。且因此獲悉的兒童永久身分識別碼(persistent identifier)也僅止於網站內部利用而已,業者不能將其洩漏予廣告商以連結至特定個人來做使用。 (2)禁止以蒐集個資作為兒童參與條件:在蒐集兒童參與遊戲、提供獎勵或其他活動的個資時,必須在合理必要的範圍內,且不能用個資的蒐集作為兒童參與「活動」的條件,且對業者發送推播通知亦有限制,不得以鼓勵上網的方式,來蒐集兒童的個資。 (3)將科技運用於教育之隱私保護因應:FTC提議將目前教育運用科技之相關指南整理成規則,擬訂的規則將允許學校和學區授權教育軟硬體的供應商將科技運用於蒐集、使用和揭露學生的個資,但僅限使用於學校授權之目的,不得用於任何商業用途。 (4)加強對安全港計畫的說明義務:COPPA原先有一項約款,內容是必須建立安全港計畫(Safe Harbor Program),允許行業團體或其他機構提交自我監督指南以供委員會核准,以執行委員會最終定案的防護措施,此次擬議的規則將提高安全港計畫的透明度和說明義務,包括要求每個計畫公開揭露其成員名單並向委員會報告附加資訊。 (5)其它如強化資訊安全的要求以及資料留存的限制:業者對於蒐集而來的資訊不能用於次要目的,且不能無限期的留存。 FTC此次對COPPA Rule進行修改,對兒童個人資訊的使用和揭露施加新的限制,除了將兒童隱私保護的責任從孩童父母轉移到供應商身上,更重要的是在確保數位服務對兒童來說是安全的,且亦可提升兒童使用數位服務的隱私保障。

TOP