跨國農業生技公司Monsanto研發的MON810品系抗蟲基因改造玉米,於今(2009)年4月中旬遭到德國農業生技的主管機關-聯邦營養、農業與消費者保護局(Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, BMELV)援引歐盟基因改造生物環境釋出指令(EU-Freisetzungsrichtlinie)中的防衛條款,加以禁種。
雖然Monsanto隨即對BMELV此項決定提出行政訴訟,但Braunschweig行政法院在5月初作出的暫時性裁定,支持了BMELV此項決定。法院基於兩大理由,裁定BMELV之禁種決定並非無據:(1)只要有新的或進一步的資訊出現,支持基因改造作物可能會對人體或動物健康造成損害,即可支持主管機關作出禁止種植已經取得歐盟上市許可的基因改造作物之決定之論據,不需要存在有必然會有風險的科學知識。(2)據此論據進行風險調查及風險評估,乃主管機關之執掌,主管機關對此有裁量權(Beurteilungsspielraum),從而,法院介入審查該行政決定的重點,在於主管機關是否已為充分的風險調查、有無恣意論斷風險。本案目前尚非終局之決定,Monsanto仍可對於此項裁定提出抗告。
在歐盟,基因改造生物的上市需透過歐盟程序為之,一旦歐盟執委會允許某一基因改造生物的上市,該基因改造生物原則上即可在全體歐盟會員國推廣銷售,包括種植。唯歐盟環境釋出指令例外容許會員國得於一定條件下,援引防衛條款主張已通過歐盟審查的基因改造生物,對於其境內環境或人體與動植物健康有負面影響,從而禁止特定已取得歐盟上市許可的基因改造生物於其境內流通。防衛條款的動用屬例外情形,且須定期接受歐盟層級的審查。
本文為「經濟部產業技術司科技專案成果」
美國聯邦通訊委員會(FCC)主席Genachowski於2009年9月21日表示,FCC將提出新的網路開放指導原則,要求包括無線網路服務提供商在內的業者,維持網路中立,不得因傳送或下載資訊種類之差異而進行流量差別管理。此提案若經同意,預計將能有效避免如AT&T、Verizon與Comcast等大公司故意阻斷或是降低特定消耗大量頻寬網頁流量,或對不同用戶收取差異價格的情況。 現行的網路開放原則係於2005年提出,僅要求網路營運商不得阻斷(stop)使用者接取合法的網路內容、應用與服務,或抵制(prevent)不讓使用者以無害的設備,如智慧手機,連線接取相關服務。 FCC預計在現行的指導原則上加入兩條新的原則,以更確保網路的開放與中立性。此兩條新的原則包含對寬頻網路服務提供業者不得歧視的網路內容與應用規範之種類,以及對網路服務提供業者透明化其網路管理作法之要求等。 FCC主席表示,雖然這樣的提案肯定會遭受到電信業者的反對,但FCC仍應積極維護網路公開與自由。
美國參議院重新提出FDA現代化法案3.0,加速新藥開發之動物實驗新替代方法發展.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。 在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。 FDAMA 3.0重點包括: 1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。 2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。 3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。 4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。 目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。
美國國家標準技術研究院公告制訂「智慧電網架構與互通性標準2.0版」為因應智慧電網應用技術發展趨勢,美國商務部(Department of Commerce)國家標準技術研究院(National Institute of Standards and Technology,以下簡稱NIST)於今(2012)年2月正式制訂「智慧電網架構與互通性標準2.0版(NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0),以下簡稱互通性標準2.0版」,以作為其國內佈建智慧電網建設之重要政策依據,並協助導引各電網間加強互通性之達成。 美國NIST係為「2007年能源獨立及安全法案(Energy Independence and Security Act of 2007)」所明文指定智慧電網互通性架構(Smart Grid Interoperability Framework)負責機構,所以自2008年開始投入規範研議工作,2010年1月公告「智慧電網架構與互通性標準1.0版(NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0)」,主要為先規範概念性示範建置架構(Conceptual Architectural Framework),明訂8大優先領域(Priority Areas),驗證公告75項特定標準,並後續設立建置「互通性發展平台(Smart Grid Interoperability Panel,以下簡稱SGIP)」。 隨著美國推動智慧電網發展進程,及因應相關應用技術日益新異,NIST陸續展開討論工作,至今(2012)年2月正式對外公告研議完成互通性標準2.0版之定稿。此新版本重要增訂內容有:新增「國際智慧電網標準」及「國際互通性調和」章節;對於SGIP優先行動方案(Priority Action Plans)2012年新增19項推動項目;並且,規劃新增概念示範參考模式(Conceptual Reference Model)類型,及增加資訊網絡模型;以及,新增「智慧電網標準驗證程序(Process of Future Smart Grid Standards Identification)」規範,及對於專業應用領域區分「輸配電(Transmission and Distribution)」、「家庭to電網(Home-to-Grid)」、「建築to電網(Building-to-Grid)」、「工業to電網(Industry-to-Grid)」、「車輛to電網(Vehicle-to-Grid)」、「再生能源(Distributed Renewables, Generators, and Storage)」、「商業與政策(Business and Policy)」分別進行研析實務應用;再者,亦研訂「互通性基礎資訊知識(Interoperability Knowledge Base)」、「高位階發展指導方針(High-level framework development guide)」、「互通性程序參考手冊(Interoperability process reference manual)」等等重要遵循規範。 未來NIST及SGIP將與能源部(Department of Energy)、聯邦電力管理委員會(Federal Energy Regulatory Commission)共同合作,依據互通性標準2.0版所研議制訂規範,及重要因應議題,陸續規劃展開各項推動方案,共同促進美國智慧電網建設與應用發展。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。