2009年05月06日歐盟議會對於大幅度改革之電信法審議並未通過,議會各會員對於創設一強而有力的電信管制體有共識,惟包裹立法中有一條款對「公民之接近網路權」干涉甚鉅,而引發疑慮。
歐盟電信法改革法案乃採取「包裹式立法」,該改革法案主要著重在科技的進步與高速網路接取的迅速成長。歐盟議會支持其他的改革,包括創設一歐盟電信管制體,賦予其權力以監督電信單一市場;分配電信頻譜予新興行動科技以及促進公民線上資訊保護的隱私權。
然而,針對人民接近使用網路權的限制範圍,卻無法達成協議,導致整個電信包裹立法仍在捷克的議會主席與議會代表之間繼續尋求妥協之道。
如果人民被發現正下載非法的著作物時,法國與英國代表則主張欲擁有較大的權限,以限制人民的接近網路使用權(此乃因其內國法已有針對下載盜版著作的處罰性規定)。其他會員國則採取較為寬容的態度,認為此涉及人民隱私範圍之保護、行為自由、表意自由與資訊接近權,應更審慎為之。
縱使該包裹立法並未被全部支持,一些觀察家認為大部分的改革條款應會通過。然而議會代表與電信委員會對此則未表達肯定之意。有意者認為:若此改革法案繼續維持包裹立法架構,恐將導致整個法案因此延宕,若能針對共識部份先行通過,似乎較能達成有效率的管制措施。
於2015年10月19日,經濟合作與發展組織(OECD)發布最新2015年OECD科學、科技與產業計分板(OECD Science, Technology and Industry Scoreboard 2015),此份報告指出,各國政府應增加對於創新研發的投資,以發展工業、醫療、資通訊產業的新領域科技,也將為氣候變化等全球性挑戰提供急需的解決措施。該報告數據顯示,美國、日本和韓國在新一代突破性科技方面具領先地位,即智慧製造材料、健康、資通訊技術這些有潛力改變現有進程的領域,尤其是韓國,最近在這些領域獲得了重大進展。自2000年以來,韓國的公共研發支出增加二倍之多,2014年GDP佔比達1.2%。反觀,許多發達經濟體的公共研發支出卻停滯不前,2014年OECD經濟體公共研發GDP佔比平均水平低於0.7%。 於2010-12年間,在智慧製造材料、健康和新一代資通訊技術領域,在歐洲和美國申請專利家族(patent families)中,美國、日本和韓國共佔到65%以上,接著是德國、法國與中國。2005-07年,韓國在這三個領域的專利家族申請數表現出最為強勁。在資通訊技術領域,韓國正致力於推動智慧聯網技術,歐盟是量子計算,中國則是巨量資料。於2013年OECD國家總研發支出實際增長了2.7%,達1.1萬億美元,但其GDP佔比與2012年相同,為2.4%。這一增長主要來自企業研發投入,而政府研發投入受到了預算合併等措施的影響。創新不止依靠研發上的投入,也依靠互補性資產,如軟體、設計和人力資本,即知識資本(knowledge-based capital, KBC)。知識資本投入已證實可抵抗經濟危機的衝擊,且2013年的數據表明各個經濟行業都增加了對知識資本的投入。但自2010年以來,許多發達國家政府資助或實施的研發減少或停滯不前。OECD警示,研發支出的減少對許多發達經濟體科技研發系統的穩定產生了威脅。鑑於OECD國家70%的研發來自企業部門,也傾向於關注特定應用程序的開發,從而改進先前的OECD計分版本,此份報告強調政府有必要保持對更具開放性的“基礎研究”的投入,始能激發與一些潛在用戶相關的新發現與新發明。
歐盟數位經濟公平稅負指令草案無共識,法國國民議會批准數位服務稅2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。 值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。 然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。 目前,法國政府為了回應黃背心運動(Mouvement des gilets jaunes)對於稅制改革的要求,已先行針對數位服務提出了稅收草案,並於2019年4月9日經國民議會(Assemblée Nationale)批准。該法案將針對全球營收超過7.5億歐元之數位服務業者,以境內網路社群利潤,推估大型數位企業之應稅所得,課徵百分之三的數位服務稅。該法案將在2019年5月21日在法國上議院進行審議。
美國總統簽署行政命令,為數位資產帶來全面的管制框架美國總統喬‧拜登(Joe Biden)於美國時間2022年3月9日簽署「確保數位資產負責任發展」行政命令(Executive Order on Ensuring Responsible Development of Digital Assets)。該行政命令為數位資產(Digital Assets)提供全面性的管制框架。所謂數位資產,係指透過分散式帳本技術以數位形式發行,表彰一定價值,或用於支付、投資、傳輸或交易資金或其等價物之憑證或資產。以下將簡述該行政命令所揭示的政策目標: 對於美國消費者、投資者與企業之權利保護,包含機敏資料的隱私保護等; 為降低金融市場的系統性風險,應建構相關數位資產帶來風險之監管措施; 避免因濫用數位資產所衍生之非法金融與國家安全風險; 透過發展支付創新(payment innovations)與數位資產,以加強美國於全球金融體系與經濟競爭力之領導地位; 強調金融服務提供之公平性,並降低金融創新下產生的負面影響,以促進金融普惠; 關注以負責任的方式促進數位資產的技術發展,包括於技術架構中確保隱私與安全,並減少因加密貨幣挖礦所導致的氣候衝擊(negative climate impacts)與環境污染(environmental pollution)。 為達成上述目標,該行政命令要求政府機關應跨部門合作,並於指定期間提出針對數位資產相關議題之評估報告及政策框架等;於國際方面,該行政命令則宣示將透過G7、G20、FATF、FSB等管道擴大與國際的合作,包括洗錢防制、建構中央銀行數位貨幣(Central Bank Digital Currency,CBDC)開發標準、穩定幣(stablecoin)與跨境資金轉帳與支付系統等議題。 其中值得注意的是,有鑑於已有國家嘗試開發CBDC,此次行政命令也顯示美國正視CBDC於金融市場之趨勢,並要求有關政府部門評估政策之可行性與實施條件等。 雖然本次行政命令並未公布新的法律規範,亦未能從行政命令觀察美國政府目前對數位資產監管所採取的立場,但可顯見美國政府藉由此次行政命令宣示將對數位資產進行全面且縝密的政策規劃。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。