香港電訊管理局(OFTA)於2009年04月27日廢止了廿五年前制定的「流動網絡(即我國的行動電話/信網路)付費」規管指引。此管制規定即是明定了行動網路業者(MNO)固網業者(FNO)間的互連費收取(FMIC)模式。今後互連費的結算將以商業協議取代事前的管制性介入。
以往固網與行動網路業者互連費計算乃基於「流動網絡付費」為之,亦即行動網路業者須繳付流動網絡與固網之間所有的通話互連費用(MPNP),顯有不對稱之狀況,不利於電訊服務在匯流大環境下的公平競爭和發展。職是,電訊管理局於2007年決議將廢除該規定並設定兩年的過渡期間,讓相關業者進行調整;多數業者也在過渡期間內達成協議或共識。業者間均同意原則上採取「毋須拆帳」(Bill and Keep, BAK)的結算模式,因此也不會產生將費用轉嫁到其他電訊服務商或是終端消費者的問題。此顯示去管制化並交由市場機制決定互連費用之作法實屬可行。
以市場取代管制,短期內雖會有不確定因素可能導致爭議,惟電訊管理局也強調業者間的協議(含協商不成)不得危及公眾利益與一定的服務品質,必要時將依法介入業者間的協商程序。該局也將持續關注互連費問題之發展。
澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年9月發布「健康隱私指引」(Guide to health privacy)協助健康服務提供者了解及實踐相關規範所制定之隱私義務以確保個人資料安全。依據1988年澳洲隱私法(Privacy Act 1988)規定,健康服務指所有評估、維持、改善或管理個人健康狀況;或是診斷、治療或紀錄個人疾病或健康狀況之行為。而健康服務提供者除了醫院及醫療人員,更包含其他專業人員例如健身房及減肥診所、私立學校及托兒所、遠端醫療服務等所有涉及健康資料並提供健康服務之單位及人員。由於澳洲隱私法要求服務提供者必須積極建立、實施及維護隱私合法處理程序,為了協助所有健康服務提供者確實遵守法定義務,以減少健康資料之隱私風險問題,OAIC制定「健康隱私指引」提出八大步驟要求健康服務提供者確保遵守義務並保障所持有之個人資料: 制定並實施隱私管理計畫,確保遵守澳洲隱私原則(Australian Privacy Principles, APPs)。 制定明確的責任制以進行隱私管理,並及時提供員工幫助與指導。 建立個人資料檔案紀錄,以確認持有之個人資料。 了解法律規範之隱私義務並實施法定流程以履行義務。 定期舉辦員工隱私培訓課程以強化團隊基礎知識。 建立隱私權政策並於網頁上呈現或是提供手冊說明相關內容。 保護所持有之資料不被濫用、遺失或未經授權的修改及揭露等。 制定資料外洩因應措施,針對資料外洩進行危機處理。
美國參議院通過對開放政府資料(Open Government Data)政策法制化具指標性意義之「數位責任與透明法」(Digital Accountability and Transparency Act,DATA Act)草案美國參議院於2013年4月10日一致通過「數位責任與透明法」(Digital Accountability and Transparency Act,DATA Act)草案,現在續行送往眾議院審查。DATA 法草案目的在於使政府支出資料更為透明公開,且以得再利用的方式提供。該草案若通過,將建立使用聯邦基金(Federal funds)做支出或受資助的政府機關單位或其他實體財務資料的標準;擴展USAspending.gov網站含括上述資料,並要求聯邦政府以電子格式,自動化、標準化的方式公佈財務管理及採購相關資料,使公私部門便於近用與進行分析。目前草案版本內文並無規定資料特定格式的資料標準,但可得確定的是必須為被廣泛接受、非專有、可搜尋,且獨立於平台使用之電腦可判讀格式,以及可得一致適用於各機關單位之聯邦得標廠商與接受政府補助之實體的特殊標誌。 曾協助草擬2011年DATA法草案之「資料透明聯盟」(Data Transparency Coalition)執行長Hudson Hollister表示,DATA法草案把結構性的資料模式應用於聯邦政府支出時,將前所未有的激發責任與支出情況間的關係;同時,也將聯邦支出資料(federal spending information)轉化為開放政府支出資料(open spending data),成為強化民主治理與激發創新的重要公共資源。然而,由於DATA法草案所涉及的機關眾多,主要包括商務部(DOC)、財政部(DOT)、總務管理局(GSA),與預算管理辦公室(OMB),該法案通過後是否能落實,絕大部分還是取決於白宮是否會要求聯邦政府機關單位完整且迅速的遵循法律的構成要件。
日本通過科學技術基本法等修正案,將創新與人文科技發展納為規範對象日本通過科學技術基本法等修正案,將創新與人文科技發展納為規範對象 資訊工業策進會科技法律研究所 2020年12月10日 日本國會於2020年6月24日通過由內閣府提出的「科學技術基本法等修正案」(科学技術基本法等の一部を改正する法律)[1],為整合修正科學技術基本法、科學技術與創新創造活性化法(科学技術・イノベーション創出の活性化に関する法律,下稱科技創新活性化法)等法律之包裹式法案。其旨在新增創新與人文科學相關科技發展目標,將之列入基本法。並因應此一立法目的調整,修正科技創新活性化法,增訂大學、研發法人出資與產業共同研究途徑,同時調整中小企業技術革新制度之補助規範。 壹、背景目的 日本內閣府轄下之整合科學技術與創新會議(総合科学技術・イノベーション会議)於2019年11月公布的「整合提振科學技術與創新目標下之科學技術基本法願景(科学技術・イノベーション創出の総合的な振興に向けた科学技術基本法等の在り方について)」報告書提出,科學技術與創新之議題高度影響人類與社會的願景,而近年聚焦之重點,則在於全球化、數位化、AI與生命科學之發展。該報告書並進一步揭示了科學技術基本法的修訂方向[2]:(1)納入「創新創造」(イノベーション創出)之概念;(2)自相互協力的觀點,併同振興自然學科與人文學科之科學技術發展;(3)允許大學與研發法人以自身收入資助具特定創新需求、或發展新創事業之外部人士或組織;(4)從鼓勵創新創造的角度,調適建構中小企業技術革新制度。 基於該報告書之決議要旨,內閣府於2020年3月10日向國會提出本次法律修正案,並於同年6月24日正式公告修正通過[3]。公告指出,AI、IoT等科學技術與創新活動的急遽發展,造就了人類社會推動願景和科技創新密不可分的現況。因之,本次修法除將人文科學項目納入基本法科學技術振興的範疇內,亦意圖落實同步推動科學技術及創新創造振興之政策構想,建構具整合性且二者並重發展的法制環境。 貳、內容摘要 本包裹式法案主要修正科學技術基本法與科技創新活性化法。首先,本次修正並列創新與科技發展為科學技術基本法規範主軸,因之,將該法更名為「科學技術與創新基本法」(科学技術・イノベーション基本法,下稱科技創新基本法),並修訂科技創新基本法立法目的為「提升科學技術水準」以及「促進創新創造」;同時,參照科技創新活性化法相關規定,明文定義創新創造為「透過科學發現或發明、開發新商品或服務、或其他具創造性的活動,催生新興價值,並使之普及,促成經濟社會大規模變化之行為」。同時,增訂科技與創新創造的振興方針主要包含:(1)考量不同領域的特性;(2)進行跨學科的整合性研究開發;(3)推動時應慮及學術研究與學術以外研究間的衡平性;(4)與國內外的各相關機關建立具靈活性且密切的合作關係;(5)確保科學技術的多元性與公正性;(6)使創新創造之振興與科學技術振興之間建立連動性;(7)有益於全體國民;(8)用於建構社會議題解決方案。此外,亦增訂研究開發法人、大學與民間企業之義務性規範,要求研究開發法人與大學應主動、且有計畫地從事人才養成、研發與成果擴散作為;而民間企業則應致力於和研發法人或大學建立合作關係,進行研發或創新創出活動。最後,基本法內原即有要求政府應定期發布「科學技術基本計畫」,作為未來一定期間內推動科技發展政策的骨幹,本次修正除將之更名為「科學技術與創新基本計畫」(科学技術・イノベーション基本計画),亦額外要求基本計畫應擬定培養研究與新創事業所需人才的施政方針。 另一方面,配合科技創新基本法修訂與政策方向,科技創新活性化法的修正重點則為:(1)新增本法適用範圍,擴及「僅與人文科學相關的科學技術」;(2)明文創設大學或研究開發法人得與民間企業合作進行共同研究的機制,允許大學或研究開發法人出資設立「成果活用等支援法人」,並給予人力與技術支援。其可將大學、研發法人持有之專利授權給企業、與企業共同進行研究或委外研究等,藉以推動研發成果產業化運用,透過計畫的形式,和企業間建立合作關係;(3)為鼓勵與促進中小企業與個人從事新興研發,調整設立「特定新技術補助金」制度,用以補助上述研發行為;每年度內閣府則需與各主管機關協議,就特定新技術補助金的內容與發放目的作成年度方針,經內閣決議後公開。同時,在特定新技術補助金下設「指定補助金」之類型,由國家針對特定待解決之政策或社會議題,設定研發主題,透過指定補助金的發放,鼓勵中小企業參與該些特定主題之研發。 參、簡析 本次科技創新基本法的修正,為日本國內的科技發展方向,作出法律層級的政策性宣示。除將人文學科相關的科技研發正式納入基本法的規範對象內,最主要的意義,在於使創新與科技發展同列為基本法的核心目的之一,顯示其科研政策下,創新與科技的推展實存在密不可分且相輔相成的關係,而有必要整合規劃。而科技創新活性化法一方面拓展大學、研發法人等學術性或公部門色彩較為強烈的機構與民間企業合作研發、成果產業化運用的途徑;另一方面,則延續近期相關政策文件強調創新價值應自社會需求中發掘的構想[4],設置了激勵中小企業投入社會議題解決方案相關研發的補助金類型。 我國立法體例上,同樣存在科學技術基本法的設計,用以從法制層級確立國內科技發展的基礎政策方向。於COVID-19疫情期間,技術研發的創新落地應用,亦已成為我國產出各式疫情應對方案、以及後疫情時期重要政策的關鍵之一。則如何延續我國對抗COVID-19過程中所掌握的協作與成果運用經驗,或可借鏡日本的作法,使創新能量能透過研發補助機制的優化,充分銜接政策與社會需求。 [1]〈科学技術基本法等の一部を改正する法律の公布について〉,日本內閣府,https://www8.cao.go.jp/cstp/cst/kihonhou/kaisei_tuuchi.pdf (最後瀏覽日:2020/12/08)。 [2]〈「科学技術・イノベーション創出の総合的な振興に向けた科学技術基本法等の在り方について」(概要)〉,日本內閣府,https://www8.cao.go.jp/cstp/tyousakai/seidokadai/seidogaiyo.pdf(最後瀏覽日:2020/12/08)。 [3]〈第201回国会(常会)議案情報〉,日本參議院,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/201/meisai/m201080201047.htm(最後瀏覽日:2020/12/08)。 [4]〈中間とりまとめ2020未来ニーズから価値を創造するイノベーション創出に向けて〉,經濟產業省,https://www.meti.go.jp/press/2020/05/20200529009/20200529009-2.pdf(最後瀏覽日:2020/12/10)。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。