瑞士諾華藥廠成立於1996年,為全球前十大藥廠之一,其首創新藥Entresto,係作用於心臟神經內分泌系統,以對抗心力衰竭症狀,其在美國也取得相關專利(US8101659、US8796331、US8877938和US9388134),專利效期大致落在2023~2027年間。藥品上市後統計至2019年6月,Entresto的全球收入已達約7.78億美元。 印度學名藥廠Macleods、Alembic、Natco公司於2019年9月向美國食品藥品監督管理局(下簡稱FDA)提交Entresto學名藥簡易新藥上市申請(下簡稱ANDA),諾華於2019年9月11日接獲通知後,即於2019年10月24日,針對上述申請ANDA之印度學名藥廠提起專利侵權訴訟,試圖阻止該些印度學名藥廠仿製Entresto。 依照美國規定,當學名藥廠提出ANDA申請時,若專利權人在45天內提出專利訴訟,則會限制美國FDA不得於30個月內核准該ANDA申請。因此,在實務上ANDA從申請到上市,需花費約三年時間,使得學名藥廠往往會選擇在原廠藥物專利尚未到期前,提早申請藥品查驗;而原廠也通常會積極於45天內發起專利訴訟,已鞏固其專利期間之市場地位。 我國西藥專利連結制度業於2019年8月20日正式上路,建議我國相關生醫藥廠商應了解相關制度規範、與國外規定之差異,並提早納入企業內部之智財管理與智財策略規劃。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
軟體安全性缺失成為買賣標的瑞士的網路安全公司WSLabi於2007年7月9日宣佈一項訊息,未來將在線上公開交易或交換一些軟體的安全性漏洞和弱點予軟體相關研究人員、安全代理商和軟體公司,價格從數百美元至數萬美元不等。而此意謂拍賣軟體瑕疵的新興市場即將被打開。 WSLabi公開拍賣軟體弱點與漏洞的作法引起了很大的爭論。以往軟體安全業者於發現軟體的弱點後,會與軟體開發者合作修補安全性弱點和漏洞,待修補完成後再公開宣佈修補軟體安全性弱點之相關訊息。但該公司的新作法將導致軟體公司未來可能因為無法及時修補弱點而商譽受損。因此該項計畫雖尚未實行,卻引起了不同看法的爭辯:支持者表示,此一計畫將有助於改善軟體弱點及安全漏洞的問題,並可鼓勵對於軟體的弱點的深入研究;然反對者卻認為,如果軟體的弱點和安全漏洞因而落入有心人的手中,利用於犯罪或幫助他人犯罪,將會對資訊安全形成極大威脅。再者,把其他公司開發的軟體弱點在市場上交易,可能也會引發道德與合法性的問題。 WSLabi於瞭解這項做法可能引起侵害著作權(重製、散布、販賣軟體等行為)、營業秘密與犯罪防治等法律上的爭議及國家安全的問題後表示,他們將會審慎地過濾選擇買主,不會將研究之結果出售予犯罪者或敵國政府。雖然如此,他們的說法仍引起質疑,畢竟判斷買主是否為善意或確定身份並非易事。
RPX公司藉買進大量專利之策略,避開Patent trolls 1 之威脅位於舊金山的RPX公司為一積極買進大量專利為目的所成立的新創公司。該公司宣稱自己為“防禦型專利的聚集者”,計畫買進有用專利,以協助保護科技公司遭受專利流氓提出專利訴訟,進而必須付出昂貴專利權利金或授權金。 RPX公司由Kleiner Perkins Caufield & Byers 及Charles Rivers Ventures兩家創投公司共同籌措資金而成立,其執行長為John Amster及Geoffrey Barker,兩位先前皆為另一專門購買專利之企業 Intellectual Ventures的副總裁。 RPX將採會員制方式,依公司營業收入的情況,每年收取固定3萬5千美元到 4百9拾萬美元的費用。會員將可依公司營運需求取得RPX之專利授權。2008年11月The Wall Street Journal 2 刊登出Cisco Systems與IBM已成為RPX的會員成員之一。 RPX公司稱已獲得150件美國專利,並另已提交申請60件美國專利,總價值共4仟萬美元,其領域包括網際網路搜尋(Internet search),無線射頻身分識別(radio frequency identification),以及行動技術(mobile technology)。 註1:Patent trolls(專利流氓) 為握有專利但不運用於公司之製造或銷售產品,而是透過專利授權而取得權利金或若不接受專利授權者,藉由提出專利訴訟而取得損害賠償金之公司。 註2:The Wall Street Journal為提供財政、商業及經濟等相關消息之報紙全文。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。