為了促進地面廣播電視傳播數位化轉換進程,南韓通訊傳播委員會(Korea Communications Commission, KCC)於2009年6月4日公佈將強制進行HD節目(High-Definition program)改良與制定執行計畫。KCC於2009年6月31日公佈與廣電數位化轉換法令有關之命令修正草案公告,其中將對無法達到要求的廣電傳播業者課予罰鍰或不利益處分。
根據先前執行廣電數位化轉換法令之經驗,KCC提出了相關修正草案。該草案將課予廣電傳播業者進行HD節目製播改良之法定義務,且須改善數位傳輸環境,以使廣電數位化能順利在2012年年底完成。此外,業者必須提出每年的執行計畫報告與公開類比播送終止、實施數位化播送的情況,否則業者將受有不利益之行政處分,例如基地台許可執照將被廢止。
南韓於2008年2月針對廣電類比訊號之關閉制定特別法,並要求在2012年12月31日全面完成廣電傳播數位化。如今為了確保數位化進程可如期完成,強制廣電傳播業者進行相關數位化工作,整體效益有待觀察。
英國數位文化傳媒和體育部(Department for Digital, Culture, Media & Sport, DCMS)於2022年11月23日發布新聞稿,宣布英國與韓國共同簽署的資料橋接規則(The Data Bridge Regulation)於同年12月19日正式生效。在此之前,英國於2022年7月5日已與韓國個人資料保護委員會(Personal Information Protection Commission, PIPC)簽署資料適足性協議(Data Adequacy Agreement),以促進兩國未來進行資料傳輸。這也是英國在脫歐後,首次與其他國家簽訂的資料協議,而依據過往兩國的數位貿易統計資料,本次協議預估將帶來超過14.8億英鎊的商機。 英國DCMS部長更進一步表示,未來將積極與其他國家的戰略夥伴,開展資料經濟商機。英國於聲明中強調參與全球跨境隱私規則論壇(Global CBPR Forum)的決心,以加速資料共享、促進創新與產學研究,聲明摘要如下: 1、本協議為加強英國與韓國資料共享的里程碑,其宗旨為創建更值得信賴的資料共享環境,以及共創更安全的資料傳輸方式。 2、本協議耗時約一年完成討論與擬訂,並期待能透過該協議,深化並擴展英國與韓國之間的資料夥伴關係。 3、英國與韓國政府承諾將促進資料在國際商業、創新及研究等領域的發展。在加強個人資料保護的前提下,促進資料的合理利用。 4、在資料自由傳輸的基礎上,本協議將提供更完善且可持續推動的全球資料生態系統。雙方政府承諾共同改進數位時代下個資料保護框架,如英國發布國家資料戰略(National Data Strategy)、修訂UK GDPR相關規範,以及韓國PIPC提出個人資料保護法部分條文修正案等具體措施。 英國政府肯認應與其他戰略合作夥伴開展多邊倡議,如參與全球跨境隱私規則論壇(Global CBPR Forum)及經濟合作暨發展組織(OECD),共同推動可信賴之政府存取資料(Trusted Government Access to Data)的目標。
Ralph Lauren於Polo商標圖樣使用爭議中勝出美國第二巡迴上訴法院於二月初判決知名品牌Ralph Lauren與美國馬球協會(U.S. Polo Association ) 自1984年開始爭執不休的馬球圖樣使用爭議由Ralph Lauren勝出,馬球協會不得使用polo圖樣於香氛與美妝產品類別,確認了2012年3月地方法院禁止馬球協會使用圖樣的判決。 自1890年以來主管美國馬球運動的美國馬球協會與Ralph Lauren的馬球員圖像恩怨可追溯回1984年,當時馬球協會以確認之訴贏得在未造成與Ralph Lauren知名的Polo品牌混淆的狀況下,馬球協會得製造授權商品。 在2012年的判決中,地方法院禁止美國馬球協會使用馬球員圖樣與POLO字樣在任何香水、美妝產品類別上,同時要求USPTO拒絕馬球協會部分的商標申請,該案法官裁決與香氛產品有關的圖樣侵害Ralph Lauren的商標權利,構成不公平競爭,同時也造成設計師與被授權人無法回復的損害。 馬球協會的律師團在上訴理由中主張:馬球員圖樣符合先前使用,同時,因為過往的判決賦予協會得使用該圖樣在服裝類產品,表示也可以使用在香氛類別,因為服裝跟香氛產品的市場是很相近的,但前述主張並不為第二巡迴上訴法院陪審團所認同。
韓國科技部成立元宇宙/NFT安全委員會隨著NFT持續延燒,韓國不少藝術家選擇透過NFT之模式進行數位交易。然2021年11月,韓國金融監督委員會認為NFT不屬於數位資產,也不承認NFT相關之數位交易。根據韓國聯合新聞通訊社(YNA)2022年7月14日報導,韓國科學技術情報通信部( MSIT)與韓國網路振興院(KISA)宣布成立元宇宙/NFT安全委員會,以檢查元宇宙和NFT等虛擬融合經濟的傳播所產生的新安全問題,並強化產業合作。 該委員會由該國元宇宙和NFT相關的平台公司、安全產業、合作社組成,旨在振興安全可靠的虛擬融合經濟產業,分析和共享網絡威脅、安全技術及損失案例,並針對各種安全問題尋求主動響應和解決方案。 虛擬數位資產本身存有爭議,加上公鏈Terra的崩盤造成韓國28萬名投資人遭受巨大損失,使作為主管機關的韓國金融委員會(FSC)和金融監督院(FSS)壓力倍增,宣布制定《數位資產基本法》大綱框架,目前此法將加密資產定義為非法幣資產、非金融商品資產之「第三類資產」,並強調未來將有加密資產委員會進行專門管理。韓國擬積極加強監管虛擬數位資產,擬徹底管理加密投資風險,並加強監管杜絕非法吸金與場外交易。《數位資產基本法》預計於2023年上路。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現