歐盟食品安全局(European Food Safety Authority, EFSA)於2009年5月29日發布歐盟第450/2009號規則(Regulation EC No. 450/2009),內容為評估與食品接觸的包裝容器之「活性材料」(active material)或「智慧型材料」(intelligence material),其活性與智慧型功能物質之使用安全性。此號規則規定了進行活性或智慧型材料物質的安全評估相關的行政管理,及申請所需提出的科技數據與資訊內容。
歐盟第450/2009號規則是一項落實第1935/2004號規則中,有關食品安全的具體規則。第450/2009號規則要求食品容器中的「活性材料」與「智慧型材料」,必須經過EFSA的安全評估測試。
歐盟於2004年10月通過第1935/2004號規則(Regulation EC No. 1935/2004),首次公佈活性材料與智慧型材料的定義。「活性材料」係指為增加食物保存期限或維持及改善情況,食品容器材料會自動釋放某些物質在食品中以延長期限。「智慧型材料」則指能顯示食物狀況或在包裝上顯示出周圍環境狀態,例如在食品包裝上,結合溫度顯示材料,指出裝運過程中的溫度狀態。
而第450/2009號規則,則是進一步落實規範。在安全評估測試中,EFSA對於申請者提出的容器材料物質,進行風險測試後,將給予申請者得以使用的物質清單。若有食品容器材料的物質經測試後發現,其活性或智慧型功能的物質,與食品容器材料中的其他物質產生交互作用,EFSA可能將限制使用此類物質於食物容器材料中,以確保容器材料之安全性。
本文為「經濟部產業技術司科技專案成果」
近年來,由於(European Food Safety Authority, 簡稱EFSA)對GM產品之管理並未能進行足夠之科學分析,同時,亦過份仰賴業者所提供之數據資料等原因,而造成歐盟某些會員國家對EFSA所作出之評估報告於公正及客觀性方面產生質疑;甚至,歐洲食品業者亦對目前EFSA是否將會因為專家人力不足而導致整體風險評估能力下降之問題表示關切。一位EFSA官員指出:我們需要更多科學專家來協助處理與風險評估有關之事務。 其次,隨著各界因對GMO產品不當之批判與歐洲整體食品安全評估工作量增加等因素,EFSA於日前決定,欲透過建立一外部專家資料庫(External Expert Database),來協助其風險評估工作之執行並促進評估專家招募過程之透明化,以達成免除外界對於歐洲食品安全評估過程疑慮之目的。不過,這些將提供協助之專家,並不會因此而真正成為EFSA科學評估小組成員(其將被視為是由人民主動對該小組執行評估工作提供協助)。除EFSA擬徵求歐盟境內專家學者外,未來其亦將邀請歐盟以外其他國家並在該領域為重要研究先驅之專家提供協助,以增加風險評估之品質與客觀性。 再者,綠色和平組織歐洲發言人Mark對於EFSA現階段執行之工作狀況也表示意見並指出:目前EFSA是在一種配備不良(ill-equipped)之狀態下,來勉強執行其所執掌之事務;不過,更讓人感到憂心者,則是由EFSA科學評估小組所做出科學性之意見,於不同會員國家間或於歐盟以外其他國家其是否仍將會被完全採納之問題。有鑒於此,相關人士認為:應再次強化EFSA於風險評估方面之能力! 最後,一位非政府機組織專家也提醒:僅單純地透過專家庫之建立,其實,並不能圓滿地解決當前EFSA於決策機制中所遭遇之困難;而只有當EFSA在未來欲邀請外部專家提供協助與支援時,一併將資金及相關政策配套措施納入考量後,才是此問題真正解決之道。
美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標2022年11月22日紐約州長Kathy Hochul簽署一項新法案(S.8518A /A.6165A),旨在消除在私人財產上安裝電動車充電樁之障礙,以實現紐約州零碳排放車輛之目標。 該法案允許民眾在家中安裝充電站,並要求屋主協會(Homeowner Association,HOA,類似我國社區管理委員會)如欲拒絕屋主申請安裝電動車充電樁,須提出書面詳細說明理由,如於 60 天內未提出,除非是因為HOA合理要求其補正資料所致,否則屋主的申請即視為許可。紐約州欲透過該法案提升車主於住處安裝電動車充電樁數量,進而提高電動車使用率。 紐約州於2021年已立法(A.4302/S.2758)要求自2035年起販售新車皆需為零碳排放車輛,期許至2050年可達85萬輛零碳排放車輛。透過各項電動車相關政策之推動,2021年紐約州電動車銷售量大幅增長,截至2022年9月全州已超過11.4萬輛電動車上路,電動車充電站超過1萬座。 對此,我國立法院法制局於2022年6月發布「社區設置電動車充電設備問題之研析」報告指出,社區仍應以用電安全第一,不宜強制設置充電樁,現階段宜規定電動車廠商應設置充電設備或更換電池的設施,如要修正「公寓大廈管理條例」強制社區設置電動車的充電設備,建議優先修正「建築法」或「建築技術規則」加強設置該設備安全要求。
英國與印度共同簽署智慧財產權備忘錄2016年11月8日印度新德里(New Delhi),在英國首相德蕾莎‧梅伊(Theresa May)及印度總理納倫德拉‧莫迪(Narendra Modi))見證下,由英國智慧財產局(UK Intellectual Property Office;簡稱UK IPO)及產業政策與推廣部(Department of Industrial Policy and Promotion)共同簽署智慧財產權備忘錄。 雖然學術上就智慧財產權之保障強度,對於促進創新領域是否具有正面效益,似乎仍然是意見分歧,反思者主要論點在於模仿或抄襲對於某些產業發展,如:時尚設計、金融產品或程式開發等,反而有益於保持源源不絕之創造力,甚且適度開放更有促進市場競爭與減少社會成本,如:避免專利蟑螂崛起或企業壟斷,其中著名案例就是Linux;然而,雖有前述反思浪潮,但目前國際間仍是普遍相信藉由協議或備忘錄形式,試圖架構完善且強健之智慧財產權保護體系,維護權利人之權益,將有助於提升企業或一般民眾投入創新領域之意願。此番論點可見諸於英國所指派至印度擔任高級專員之多米尼克‧阿斯奎斯(Dominic Asquith),即是認為英國與印度簽署智慧財產權備忘錄,對於兩國創新及創意領域之發展,具有高度重要性。 針對該備忘錄之重點,內容摘錄如下: 1、相互交流智慧財權領域管理優化方式,如:簡化專利、商標、工業設計之註冊處理流程。 2、技術交流,此包括主管機關支援及智慧財產權紛爭之司法替代方案。 3、宣傳活動,此含有智慧財產權評價與維護之業務諮詢。 4、針對公眾舉行教育活動,以提高其對智慧財產權之認識與尊重。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現