中國大陸首例因在網絡遊戲中花重金組建的團隊遭遇離奇解散,導致來自多個省市的遊戲玩家聯手於河南省對網絡遊戲運營商提起訴訟。
代表玩家提出訴訟的原告在《魔域》中投入許多時間與金錢,建立「情誼無痕」軍團,最高時軍團人數達2000餘人。由於軍團的升級和日常維護開支需要眾玩家共同出力出錢,「情誼無痕」被無故被解散所影響的玩家人數眾多。
被告網龍公司主張遊戲帳號註冊時所輸入的身份證並非原告本人、服務器電腦記錄顯示有人登錄「落花有意」帳號並將「情誼無痕」軍團解散,由此可推斷該帳號曾有兩人以上使用,故不能排除該帳號曾借與朋友使用或被他人盜號使用而將軍團解散。
每法官與原被告雙方進行調解,因雙方意見分歧,最終未達成調解協議。玩家表示如果網龍公司不能給予合理的答覆,他們將聯合分佈在全國各地的其他玩家陸續不斷地起訴網龍公司。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
印度隱私權制度下兒童資料安全的保護現狀印度電子資訊產業技術部(MeitY)2022年11月在網站上公布了個人資料資訊保護法草案(Digital Personal Data Protection Bill,以下簡稱該法案),並於2023年7月提交議會審查。目前印度民法不承認未成年人(未滿18歲者)具有自主簽訂契約的能力。因此,取得的兒童同意不具有法律效力,必須徵得父母或是監護人的同意才能合法蒐集兒童個人資料。 根據印度2022年個人資料資訊保護法案草案,任何未滿18歲的人都被歸類為「兒童」。該法案中同時限制專門向兒童發送的廣告,並且監管任何追蹤兒童行為的情況。目前國際隱私法(例如:歐盟通用資料保護條例 (GDPR)、加州消費者隱私法(CCPA)等)的兒童定義多在13至17歲之間。但考慮到兒童個人資訊的敏感性和潛在危害,印度政府採取了較保守嚴謹的路線。政府也已被授權制定有關處理兒童個人資訊的細則,特别是確保資料使用人不可使用可能對兒童造成傷害的個人資料。 根據社會發展狀況,兒童若每次在網路平台上進行活動時都需經過父母或是監護人同意不甚妥適,且根據前述說明,兒童界定年齡為18歲以下,若依照統一年齡範圍進行控管,實際執行上面臨窒礙難行之處。故修法者在對於該法案修改意見中,引用了其他國家隱私法中的不同年齡分類限制,以求降低年齡門檻限制,或是根據用戶的年齡制定差異化的授權要求。 另一個產生的爭議為,該如何驗證父母或是監護人的同意表示。法條中目前無明確規範何為「有效之同意表示」,現行各平台使用不同的方法獲得父母或是監護人的同意,目前有兩種方式,包括點選「同意」按鈕,或是在用戶條款中表示若使用服務等同於監護人同意。 關於兒童年齡之界定,是否將參考其他國家規範進行差異化設定,目前暫無明確定論(包括如何調整、年齡級距設定),根據資訊使用的普及,兒童年齡的界定可以預期的將會進行調整;關於如何有效驗證父母或是監護人的同意表示,目前在技術上大多服務商都偏好透過會員註冊時的同意按鈕或是用戶條款中列明若使用服務即代表同意這兩種方式認定,在這兩種方式之後,系統是否有設定驗證機制,以及需要何種驗證方式才可以認定父母或是監護人的同意表示是符合法律效力的,都需後續再進行研擬。
2013年全球智慧財產權申請量顯見成長,中國大陸佔居首要世界智慧財產權組織(WIPO)於2014年12月所公布的世界智慧財產權指標(World Intellectual Property Indicators)基準報告指出,商標、工業設計及實用新型的申請量較前一年度成長,並以中國,美國和日本居前三位;另就申請類別而言,總成長比率分別為專利占9%、商標占6.4%、工業設計占2.5%、和植物品種占6.3%。 報告統計結果顯示,2013年全球專利申請案件約260萬件,比起前一年成長了9%,其中,中國大陸占總申請量的三分之一,其次為美國占總申請量的22%,日本申請量達32萬筆,排名為全球第三位。 報告另指出,專利申請領域依序為,電腦技術佔7.6%、電子機械佔7.2%、測量佔4.7%、數位通訊佔4.5%及醫療技術佔4.3%。 除專利外,其他的智慧財產申請情況,商標申請量上升近500萬件,亦以中國大陸排名首要。另工業設計申請案約達124萬筆,較前一年度成長約2.5%,中國大陸占總申請量的53%。 WIPO總幹事Francis Gurry表示,綜觀全球智慧財產申請全貌,中國大陸及美國於智慧財產權申請量仍明顯成長,而相對於歐洲及日本整體申請量則有明顯衰退之趨勢。
英國公共廣電服務將可收取轉播之著作授權金英國2017年數位經濟法(Digital Economy Act 2017)已於2017年4月27日經英國國會通過,該法第四章規範智慧財產權,其中第34條條文內容意旨係公共廣電服務(Public Service Broadcaster)對其經轉播之內容享有著作財產權,任何欲轉播公共廣電服務內容之有線電視平臺將不得無償轉播,應交付授權金。 在舊法之架構下,英國1988年著作、設計及專利法(Copyright, Design and Patents Act 1988)第73條免除有線電視平臺轉播公共廣電服務內容所生之著作權侵權之責任。舉例而言,維珍集團旗下的電視媒體(Virgin Media)若轉播英國獨立電視臺ITV之節目,因不涉著作權侵權,故毋庸給付授權金。該條之立法目的原係為扶持80年代後有線電視發展之政策目標,然現今因多頻道、衛星數位電視,甚至是網路平臺持續蓬勃發展,該條文已相對過時,故透過2017年數位經濟法將該條文刪除。 英國公共廣電服務業者如BBC、Channel 4和ITV近年來大力倡導並遊說此立法政策,強調大多數的英國原創節目都是由其產出,主張有線電視平臺應當給付合理的轉播授權金,始能支持公共廣電服務業者持續為英國民眾帶來高品質的節目內容。惟,考量部分公共廣電服務業者與有線電視平臺之關係,如維珍媒體是ITV之大股東,往後公共廣電服務是否能有足夠的議價能力收取到合理的授權金,抑或反而造成英國民眾須支出更多節目費用,值得關注。