美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )主席Julius Genachowski表示,美國政府正努力規劃商業用途頻譜(spectrum)供給量,以滿足通訊科技服務發展需求。惟諸多產業專家預測無線通訊服務運用導致頻寬需求快速增加,無線通訊擁塞情況恐將嚴重惡化。
儘管FCC已藉頻譜拍賣釋出不少頻譜,且2009年6月全美廣電數位化後(DSO),一定要件開放業者毋須取得頻譜執照便可使用所謂的「閒置頻譜」(interleaved/white space),但是頻譜匱乏的問題仍無法解決。
對此,FCC允諾將會弭平頻譜供給需求間的落差,並且列為FCC的首要任務之一。未來FCC將透過非商用頻譜重分配與鼓勵發展更有效率使用頻譜之科技,以期解決頻譜不足的窘境。
產業界與公眾安全通訊相關組織呼籲FCC應提供更多頻譜供無線通訊服務使用。不過FCC亦要求資通訊產業於研發行動寬頻新產品時,須設想頻譜供給不足,研發更有效率使用頻率的通訊技術。產官學三者間,必須相互配合與協調(尤其是業者間的「不歧視原則」),方能有效解決網路通訊擁塞及頻譜匱乏問題。
2025年12月初,澳洲數位轉型局(Digital Transformation Agency,下稱DTA)發布《政府負責任使用AI政策2.0》(Policy for the responsible use of AI in Government 2.0),旨在進一步強化公部門在AI的透明度、問責性與風險管理能力,於2025年12月15日生效,取代 2024年9月實施的過渡版本。 一、適用範圍 政策適用於所有非企業型聯邦實體(Non-corporate Commonwealth entities),即不具獨立法人地位、直接隸屬於政府的機關或單位。企業型聯邦實體則被鼓勵自願遵循。政策定位為「補充與強化既有法制」,非另訂獨立規範,因此在實務中須與公務員行為準則、資安規範及資料治理制度併行適用。 二、政策重點 在政策施行的12個月內,適用機關須完成以下要求,以確保落實AI治理架構: (一)制度建置 1. AI 透明度聲明:機關須在政策生效後 6 個月內發布「AI 透明度聲明」,公開 AI 使用方法與現況。聲明中須說明機關風險管理流程、AI 事件通報機制及內外部申訴管道,確保使用過程透明、可追蹤。 2. 人員指定與培訓: 機關須指定制度問責人員(Accountable officials)以及AI使用案例承辦人(Accountable use case owners)。 所有員工皆須進行關於負責任使用AI的培訓,機關並依員工職務權責提供個別員工進階訓練。 3. 建立內部AI使用案例註冊清單(Internal AI use case register),以供後續追蹤 該清單至少包含: (1)使用案例負責人(Accountable use case owners):記錄並持續更新範疇內 AI 使用案例的指定負責人。 (2)風險等級(Risk rating):AI使用案例的風險等級資訊。 (3)異動紀錄:當使用案例的風險評級或負責人變更時,須即時更新清單。 (4)自定義欄位:各機關可根據其需求,自行增加欄位。 (二)AI 使用案例範疇判斷 機關須在評估所有新案例,依以下特徵判斷AI應用是否屬於「範疇內(In-scope)」的應用: 1.對個人、社群、組織或環境造成重大損害。 2.實質影響行政處分或行政決策。 3.在無人工審查的情況下,大眾將直接與AI互動或受其影響。 4.涉及個人、敏感資料等資訊。 (三)進階風險評估 依AI影響評估工具(Impact Assessment Tool)針對公眾近用權;不公平歧視;加重刻板印象;損害人、組織或環境;隱私顧慮;資料敏感之安全顧慮;系統建置之安全顧慮;公眾信任等8類別,加以判斷範疇內AI應用,若有任一類別被評為「高風險」,即判定為「高風險」;若所有類別中最高的分數為「中風險」,則整體判定為中風險。 判定為中、高風險之AI應用,均需進行全面審核。中風險須列出所有中風險項目及其控管措施,主要為內部控管;而高風險則要求向DTA報告,且每年至少進行一次全面審核與風險再評估。 澳洲欲透過發布AI透明度聲明、更新AI使用案例註冊清單、強制執行AI應用之風險評估及人員培訓,確保公部門對AI的負責任使用與問責。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,落實AI資料管理與追蹤。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國環保署提出汽車廢氣排放新標準以加速電動汽車發展美國環保署(United States Environmental Protection Agency, EPA)為限制汽車廢氣排放污染物對環境造成的危害,根據美國《潔淨空氣法》(Clean Air Act, CAA)的授權,於2023年4月12日提出《2027年式輕型、中型商用車車型污染物排放標準》(Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles),以及《重型商用車溫室氣體排放標準-第三階段》(Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3)這兩件汽車廢氣排放新標準,期加速電動汽車(Electric Vehicle, EVs)發展、加速潔淨交通轉型。 《2027年式輕型、中型商用車車型污染物排放標準》以及《重型商用車溫室氣體排放標準-第三階段》分別針對2027年到2032年所出廠的輕型商用車、中型商用車以及重型商用車的汽車廢氣排放標準做出更嚴格的新規範,預計將成為美國迄今為止最嚴格的汽車廢氣排放標準。目標是到2032年時,輕型商用車行駛每英里二氧化碳平均排放量下降至82公克,溫室氣體排放量相較於2026年車型年標準將減少56%;中型商用車行駛每英里二氧化碳平均排放量下降至275公克,溫室氣體排放量相較於2026年車型年標準則將減少44%。至於重型商用車,以重型拖曳機(heavy-haul tractors)為例,將從2027年車型年行駛每噸英里二氧化碳平均排放量48克,到2032年時下降至41公克左右。 根據這兩件汽車廢氣排放新標準,並未禁止化石燃料汽車的製造或銷售、亦未規範要求電動汽車的年製造量或年銷售量要達多少數量或比率,而是為汽車限定更嚴格的廢氣排放標準,因此,仍無疑地將迫使汽車製造商減少販售化石燃料汽車、加速推動電動汽車生產的腳步以符合新的排放標準規定。環保署預測汽車製造商在為符標準所採的相應作法之下將會大幅提高電動汽車在新車的銷售比率:到2032年時,電動汽車將佔輕型商用車新車銷量的 67%、中型商用車新車銷量的46%。而此累計可望到2055年時減少約100億噸的二氧化碳排放,相當於美國2022年二氧化碳總排放量的兩倍多。將有效減少有害空氣汙染、並大幅降低因空氣汙染所致的罹病風險以及過早死亡等危險。 藉由新的排放標準,將逐步淘汰化石燃料汽車的生產,加速潔淨交通轉型,有效應對氣候危機並提高全國各社區空氣品質。
美國法院否決Google與作家、出版商達成的和解協議美國紐約南區地方法院於今年3月22日裁定否決Google 與美國作家協會(Authors Guild)及出版商間所達成的和解協議。此和解案起於Google 於2004年提出的Google Books 計畫,規劃與各大學圖書館合作進行將其館藏圖書數位化。美國作家協會於是於2005提起集體訴訟,在經過兩年談判後與Google 於2008年達成和解協議。如此協議被法院認可,Google 將可掃描及販售成千上萬之書籍,其中包含已絕版之書籍,且即使這些書籍並非屬於公共財或未取得出版商之許可置於Google Books上。 美國地方法院法官Denny Chin表示雖然將書籍數位化且建制完整的數位圖書館(universal digital library)將會造福很多人,但認為和解協議的內容不具公平、適當及合理性。因相較於其競爭對手,此和解協議將給予Google享有顯著的優勢,讓其進行大規模的複製未經授權的著作。 Google 律師表示此裁定令人失望,但將檢視法院之判決並思考後續之選擇,並說明不論結果如何,Google 將持續致力於將全世界的書籍藉由線上Google Books 及Google eBooks 的方式被發現。
日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。