基因改造作物的商業化普遍在各地受到管理規範,如今全球即將步入上市階段的基因改造作物與日俱增,相反地在歐洲地區相關核准作業程序卻遲滯緩慢。這主要起因於各國家地區對於基因改造產品所採取管理方式與法律規範各有不同,相關產品的安全評估標準及法律審查程序也有所差異,因此目前基因改造作物產品雖然在同一時間內申請上市核准,之後仍難以取得全球各國家地區之核准。
今(2009)年7月,歐盟所屬之研究單位Joint Research Centre(JRC)指出基因改造作物產品的非同期性核准(asynchronous approval)將為全球農業市場交易帶來相關一連串的問題。根據JRC研究,某些國家地區如歐盟,採取全面禁止基因改造作物(“zero-tolerance policy”),立法禁止核准基因改造作物以進口商品之名義輸入,即便某些基因改造作物已在本國境內允許種植並且將其歸類為安全,但任何含有上述微量基因改造作物成分之農產品,也同樣遭歐盟禁止輸入,歐盟全面禁止基因改造作物產品之作法形同架設了一道產品交易的禁令。以過往經驗為例,因歐盟全面禁止基因改造作物之管理方式,已導致產品無法輸入,大幅影響該地區的動物飼料。
隨著全球基因改造作物種植面積及商業使用量增加的發展趨勢,未來恐將難以在全球市場中取得毫無添加基因改造作物的產品,尤其當這些基因改造作物是允許在其他國家境內種植,但卻未獲歐盟批准者。因此,相對於未添加基因改造作物產品之價格將因此上揚,而仰賴動物飼料進口輸入的歐盟則應多加關切此事。
為能降低含有微量基因改造作物商品所帶來的衝擊,JRC歸納「全球基因改造作物商業化流程研討會」中專家學者之意見,建議歐盟宜再次考量全面禁止政策之必要,或改以容許低含量基因改造作物產品之上市標準予以取代;其他建議則包括簡化核准程序,設立各國互相認可的基因改造作物風險評估方法,以及彈性落實國際食品標準委員會相關之規定,以期能減少日後基因改造作物產品非同期性核准之影響。
本文為「經濟部產業技術司科技專案成果」
歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國第七巡迴上訴法院於Wallace v. IBM, Red Hat, and Novell 一案認定GPL或自由軟體授權模式不違反聯邦反托拉斯法美國第七巡迴上訴法院( U.S. Court of Appeals (7thCir) )最近就 Wallace v. IBM, Red Hat, and Novell 一案做出判決,本案爭執重點在於 GPL 授權條款與反托拉斯法之間的關係,美國第七巡迴上訴法院認為 GPL 授權條款並不違反反拖拉斯法,法院也同時明確表示,一般而言自由軟體無須擔心會違反反托拉斯法。 本案上訴人 Daniel Wallace 係程式設計師,其欲販售由 BSD ( Berkeley Software Distribution )所開發出來的競爭軟體給各級學校。 BSD 是 Linux 的衍生版本,而 Linux 作業系統則是屬於自由軟體的一種,想要使用 Linux 的人就必須遵守 GPL 授權條款。依 GPL 授權條款規定,不論 Linux 或 Linux 之衍生著作均不得收取授權費用,上訴人因此指控 IBM 、 Red Hat 、 Novell 與自由軟體協會涉嫌共謀將軟體價格設定在零,涉嫌以掠奪性定價( predatory pricing claim )方式削減作業系統市場之競爭,已違反反托拉斯法。 法院認為,本案並無法主張掠奪性定價,蓋被上訴人 IBM 、 Red Hat 及 Novell 並無法因此而取得獨佔價格,其授權價格之所以為零乃是遵照 GPL 授權條款的結果,且消費者並未因此受到損害。其次,法院也指出,著作權法通常對他人之改作權加以限制,其目的是為了收取授權金,不過著作權法人亦可用以確保自由軟體維持零授權金,因此任何嘗試想要販售自由軟體之衍生著作者,將會違反著作權法,即令改作人不同意接受 GPL 授權條款的約束。
數位內容通路商收購相關支援技術數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。 隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。
美國總統拜登簽署「改善國家網路安全」行政命令美國總統拜登於2021年5月12日簽署「改善國家網路安全」總統行政命令(Executive Order on Improving the Nation’s Cybersecurity),旨在增進美國政府與私部門在網路安全議題的資訊共享與合作,以加強美國對事件發生時的因應能力。本命令分從數個面向達成前述目標,分別為: (1)情資共享之強化:消除威脅政府與私部門之間資訊共享的障礙,要求IT與OT服務者偵測到可疑動態時,與政府共享相關資訊與相關安全漏洞資料,簡化並提高服務商與聯邦政府系統服務合約之資安要求。 (2)現代化聯邦政府網路安全:針對聯邦政府網路,建構更現代化與嚴格的網路安全標準,並採取零信任架構,例如應強化雲端服務與未加密資訊之共享機制,包括由公眾直接透過WiFi連網取得或下載之資訊網頁等,針對其建構安全機制、更新加密金鑰與建構新的安全工具。 (3)強化軟體供應鏈安全:提高軟體供應鏈安全性,包括要求開發人員提高其軟體透明度、公開安全資料、利用聯邦資源促進軟體開發市場,以及建構軟體認證,使市場更容易確定該軟體的安全性。 (4)建立資安審查委員會:建立由公私部門共同合作的資安審查委員會(Cybersecurity Safety Review Board),針對重大資安事件做及時的回應、,並進行獨立第三方之審查與建議。 (5)標準化聯邦政府應對資安弱點及資安事件的教戰手冊:建構聯邦政府因應資安事件之資安事件教戰手冊,使聯邦政府得以及時並一致地回應網路攻擊事件。 (6)改進對聯邦政府網路資安弱點及資安事件之偵測:清查聯邦政府端點,改善聯邦政府對資通安全事件的偵查能力,並進一步布建強大的端點監測和回應系統(Endpoint Detect and Response, EDR)。 (7)提升聯邦政府調查與補救之能力:提升資訊安全事件調查與補救能力,並透過更頻繁與一致的資安事件日誌來減緩駭客對聯邦政府網路的入侵。 (8)建制國家安全系統:要求聯邦政府部門採用符合相關網路安全要求之國家安全系統。 本行政命令是美國政府在美國油管遭駭事件後,對相關事件之具體因應。本行政命令雖主要著眼於聯邦政府的網路安全,但亦透過總統行政命令鼓勵私部門在網路安全核心服務上加強合作與投資。預計美國在此總統行政命令基礎上,將有進一步強化公私合作的措施與資源挹注。