歐盟執委會於所公告之電子電機廢棄物回收法令檢視報告(Review of an EU Directive on Recycling Waste Electrical and Electronic Equipment)中建議,對於產品製造商之回收目標規範標準,應從現行概括固定值:每年人均4kg(4kg/capita per year)回收目標,改為變動式比例值:以現行市場商品平均量之65%,作為規範目標並且,由於法令規範課予產品製造商強制回收責任,市場實務上,也出現了產品製造商為了達到WEEE要求規範目標值,轉而向民間回收業者收購「回收憑證(Recycling Certificates)」,並且,因為供需失衡問題,造成回收業者隨意喊價的情形,也多所見聞。
而歐盟執委會為進一步落實環境保護政策,還是打算維持原案,提議對於WEEE規範內容進行檢討修改,並建議各會員國於國內法令增加誘因及鼓勵措施,導引協助產品製造商擴大回收體系、檢視改善回收管理系統,而更具能力對於提高目標規範,能夠落實遵循之。歐盟執委會此項法令修改提議,是否得以真正落實未來立法中,值得再加以觀察。
本文為「經濟部產業技術司科技專案成果」
台南市低碳自治條例與國際促進能源效率立法趨勢 科技法律研究所 2013年3月26日 壹、事件摘要 根據自由時報3月5日報導,台南市為將該市打造為國際指標性之低碳城市,在去年制訂了「台南市低碳城市自治條例」,並在未來規劃對大建築面積、及用量超過800千瓦之用戶,要求必須裝置一定比例太陽光電系統的強制規定。該條例同時要求公有、及供公眾使用的建築物,須為銀級以上綠建築之規定,亦在近日吸引了媒體的關注。 貳、重點說明 一、臺南市政府低碳城市自治條例 台南市政府於2012年12月22日以府法規字第1011084760A號令公布了「台南市低碳城市自治條例」,共六章、三十八條,並於第四章「低碳城市推動與管理」,做了前述對耗電大的用戶為一定比例太陽能光電系統設置要求之規範。 在綠建築的部分,依據該條例第21條第1款之規定,台南市公有或經該市公告指定地區之新建建築物於申請建造執照時,若非供公眾使用之建築物,須為合格級以上之綠建築。而公有及供公眾使用之建築物,則須進一步符合為銀級以上之綠建築。此策略採取賦予公部門較高的法規遵循義務,與國外立法例趨勢相當吻合。詳述如下。 參、事件評析 一、國外立法例 (一)從一定面積以上面積建築著手 根據自由時報的報導,台南市政府在未來將針對大建築面積用戶,強制其裝設用電量一定比例的太陽光電系統。關於面積的細部規範雖然未見於該市低碳自治條例,但此一規劃無疑符合國際間為提高節能效率所採取的規範趨勢。 例如美國在2007年能源獨立及安全法架構下,由總統在2009年所發佈的行政命令第13514號的第2條第g項第3款,即要求確保既有聯邦建築或聯邦機構(agency)所承租之建築,面積超過5000平方英呎者,應在財政年度2015年前,使其面積的15%完全符合「聯邦永續建築指導原則」(Federal Leadership in High Performance and Sustainable Building, 在該行政命令中簡稱 Guiding Principle)。 而新加坡也有類似的規範。根據該國「2008年建築管制(環境永續)規定」(Building Control《Environmental Sustainability》2008)第3條與第4條之規定,所有總樓板面積(gross floor area) 超過2,000平方公尺的建築之建設或有關總樓板面積超過2,000平方公尺既有建築之面積增建(increasing the gross floor area),或關於建築外殼或建築服務的提供、擴大或實質的改變,皆應至少達到依據建築環境永續規範(Code for Environmental Sustainability of Buildings)的綠色標誌積分(Green Mark scores) 50分。 (二)對公部門採取較民間更高標準 由前述關於南市低碳自治條例中關綠建築之規範可知,該市在為相關管制的規劃時,所採取的政策是讓公部門先承擔較高的法規遵循義務(在該條例第21條的規定中,公有建築物在申請建照時須符合銀級綠建築之標準,而不若一般非供眾使用之建築物,僅要求其須合格)。此種作法亦為國際間為引領民間部門推動節能減碳常見的法制政策規劃。 除了上述美國的規定也是先對公部門作要求外,歐盟能源指令第5條第1項也有類似之規範。該條款要求歐盟各會員國自2014年1月1日起,就其中央政府所擁有或佔有之面積超過500平方公尺之建築,每年應翻修總樓板面積的3%,使其至少符合建築效率指令(2010/31/EU, Directive on Energy Performance of Buildings)第4條關於最低建築能源效率(minimum energy performance requirements for buildings)之要求。 二、短評與小結 由上述介紹可知,台南市低碳自治條例,為促進節能減碳而採行諸如由一定面積以上建築物著手,並對公部門此取更高標準之規定皆與國際趨勢相符。無獨有偶,高雄市於去年通過的綠建築自治條例,也有類似規定。我國在各級地方政府皆能與國際接軌的共同努力下,能否在促進能源效率方面達成較歐美等先進國家更耀眼的成積,著實令人期待。
美國農業部公布施行現代化肉禽屠宰檢驗規定修正條文美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。
聯網自動駕駛車(CAV)聯網自動駕駛車(Connected and Autonomous Vehicles, CAV)是一種自動化聯網載具,係自動駕駛車以及互聯汽車兩種科技的集合,而CAV僅須符合其一即可稱之。按英國交通部的定義,自動駕駛車係為「無須稱職的駕駛者管理各種道路、交通與天候條件之下,能安全完成旅程的車輛。」目前上市產品中已可見部份自動駕駛車的身影,諸如自動路邊停車系統、先進輔助駕駛系統、自動緊急煞車系統等等。 互聯車輛科技允許車輛之間的互相溝通以及更廣泛聯網,目前已有的互聯車輛科技如動態導航系統、緊急求救系統(eCall)等,特別是歐盟欲規範未來新車都必備eCall系統,該系統可偵測事故發生並自動開啟安全氣囊、撥打求救電話並開啟全球定位系統(GPS),以利醫護人員快速救援。目前有三種正在發展中,用以支援互聯車輛的科技:V2V(車輛之間互聯)、V2I(車輛與交通設備互聯)、V2X(車輛與任何適當的科技互聯)。而發展CAV有六種益處,包括提升行車安全、減少交通阻塞、減少碳排放、更多自由時間可運用、任何人都可平等地使用CAV以及改良道路之設計。 我國刻正實施行政院於2014年5月核定之第2階段「智慧電動車輛發展策略與行動方案」,推動智慧電動車整車及零組件性能提升,協助廠商提升製程及資訊應用功能;研析國際驗證及測試規範,完善智慧電動車產業價值鏈。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。