德國總理Angela Merkel在日前舉辦的法蘭克福書展中強調,反對在google在未釐清相關權利與建置對應的配套機制下,擅自將圖書典藏掃描數位化的作法。而不只德國反對Google的數位圖書計畫,歐盟執委會也在10月19日通過提案,要求歐盟正視圖書館藏數位化的智慧財產權議題,提案委員也督促歐盟應儘快採取行動,配合歐盟著作權法體系,發展更具競爭力的歐盟館藏數位化方案。
然在館藏書籍數位化的過程中,有必要先解決孤兒著作(verwaiste Werke)因著作人不明而無法進行數位化及授權的困境。據估計,英國圖書館館藏就有40%屬於孤兒著作。為找出一套簡易的授權機制,並建立歐盟各國針對孤兒著作共通的認定標準,歐盟在eContent Plus計畫架構下,於2008年11月便開始所謂「ARROW行動方案(Accessible Registries of Rights Information and Orphan Works)」,希望透過各國圖書館、著作權集體管理團體、出版商間的參與,整合歐盟境內不同的權利登記機制,共同開發出一套適用於全歐盟的權利登記系統,清楚顯示歐盟境內各種著作的權利狀態,促使數位館藏的授權可以在一個透明且價格合理的機制下進行,同時確保著作人可以得到適當的報酬。
有關歐盟針對圖書數位化的政策與討論,以及google數位圖書協議後續協商的結果,仍有待持續追蹤觀察。
隨著基因工程的逐漸成熟,關於現代生物技術可否取得專利,引起激烈的公開辯論。為了澄清這些問題,歐盟和美國曾採取重要的立法和行政措施,如歐洲議會和理事會關於生物技術發明的98 / 44 / EC指令 ,及美國專利商標局2001年1月5日所修改的確認基因有關發明實用性指南(Guidelines For Determining Utility Of Gene-Related Inventions of 5 January 2001)。 然而,美國最高法院於2013年《Association for Molecular Pathology v. Myriad Genetics, Inc.》一案中認為,自然發生的DNA片段是自然界的產物,不因為其經分離而具有可專利適格性,但認為cDNA(complementary DNA,簡稱cDNA)具有可專利適格性,因為其並非自然發生。該判決強調Myriad Genetics, Inc.並未創造或改變任何BRCA1和BRCA2基因編碼的遺傳信息,即法院承Myriad Genetics, Inc.發現了一項重要且有用的基因,但該等基因從其週邊遺傳物質分離並非一種發明行為。不過,法院也認為“與經分離的DNA片段屬於天然發生者不同,cDNA則具有可專利性。”因此,“cDNA非自然的產物,且根據美國專利法第101條具有可專利性。” 其次,美國於2012年3月《Mayo Collaborative Services v. Prometheus Laboratories》案認為,檢測方法僅為揭露一項自然法則,即人體代謝特定藥物後、特定代謝產物在血液中濃度與投與藥物劑量發揮藥效或產生副作用的可能性間的關聯性。即使需要人類行為(投以藥物)來促使該關聯性在特定人體中展現,但該關聯性本身是獨立於任何人類行為之外而存在,是藥物被人體代謝的結果,因此,全部應為自然過程。而不具有可專利性。
促進智慧電網之發展—德國提出智慧電網佈建期程 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
德國聯邦法院裁判臉書之Find Friends功能違法德國消費者組織聯盟(Federation of German Consumer Organisations , 以下簡稱VZBV)針對臉書(Facebook)的”find friends”功能向該公司發出警告信。臉書的”Find friends”功能為使用者先在該社群網站上輸入自己的email後,再選擇其與朋友的聯繫管道,如yahoo信箱、skype等。臉書將儲存使用者所上傳的聯絡人資訊,並用以協助使用者尋找朋友,或者透過居住地、學校、工作場所等搜尋要件,協助使用者找尋好友。然而,在臉書未有任何修正的情況下,VZBV向柏林地方法院控告臉書並獲得勝訴,之後臉書向上訴法院提起上訴,但於2014年01月24日遭到駁回。2016年01月14日,德國聯邦法院維持下級審法院判決,裁判臉書的” Find friends”功能牴觸德國隱私權保護與消費者保護之法律。 (一)德國聯邦資料保護法(Bundesdatenschutzgesetz,BDSG) 法院認為該項功能違反德國聯邦資料保護法,蓋因臉書未能在收集或利用使用者以及非使用者的資料前,事先取得其同意。此外,臉書的契約條款中亦未提供使用者適當程度的通知,讓使用者知道他們的資料將會被如何使用。 (二)德國不正競爭防制法(Gesetz gegen den unlauteren Wettbewerb, UWG) 法院認為,臉書在利用使用者資料並且寄發廣告郵件給非臉書會員時誤導使用者,讓使用者以為這個功能是受到限制的,亦即使用者誤認僅有其臉書上的朋友才在搜尋範圍之內。然而,臉書實際上更寄發邀請廣告郵件給其他非臉書的使用者。由於德國不正競爭防制法第五條第一項規定,採取引人錯誤的交易行為,其行為構成不正當。此外,該法第七條亦規定,具訊息之廣告,其掩飾或隱匿委任傳送此訊息之發送人的身分, 即被視為不合理之煩擾。又以不合理之方式來煩擾市場參與者之交易行為,不得為之。因此,其被認定構成德國不正競爭防制法第五條”引人錯誤的交易行為”以及第七條"不合理之煩擾"。 本案從2010年開始直至聯邦法院裁判結果出爐前,”find friends”功能已有修正,然而VZBV認為這些修正並不足夠。在2016年的這份裁判出爐後,facebook將如何修正及調整商業模式,以符合德國法律之規定值得持續關注。此外,許多社群網站如LinkedIn亦有類似功能,該裁判結果對於這些網站的商業運作,將造成如何的影響亦應持續追蹤。