2009年5月,在日本「智慧財產戰略本部」所屬「以智慧財產進行競爭力強化專門調查委員會」(知的財産による競争力強化専門調査会)下所成立之「先進醫療專利檢討委員會」(先端医療特許検討委員会),針對日本在先進醫療技術領域的專利保護制度進行檢討,其中提出建言,建議修訂專利審查基準,將以下的醫療相關發明類型納入可獲專利保護之發明標的:1.既有醫藥品用法或用量之改良,其可以大幅改善藥物副作用或提升服藥後生活品質,同時其效果超越專家所能預想之程度;2.輔助醫師進行最終診斷之人體有關資料收集方法,例如核磁共振攝影(MRT)或電腦斷層掃描(CT)等技術相關發明。上述建言之後被納入智慧財產戰略本部所公佈之「智慧財產推進計劃2009」(知的財産推進計画2009)中,列為2009年度日本政府應執行之智慧財產權相關重要政策措施其中的一項,而前者便是所謂的藥品服用法發明專利。
這而日本特許廳根據上述政策決議,在2009年8月提出依委員會建議所修訂之專利審查基準修訂草案,而在完成徵詢公眾意見的行政程序後,於2009年11月正式公告成為新版的專利審查基準。
其中在「醫藥發明」部分,新版專利審查基準言明,若醫藥發明其成分與先前技術的醫藥品並無不同,同時適用之疾病症狀亦無不同,但其因為其所揭示的特定用法或用量,致使其在適用於特定疾病時會產生不同之效果時,這樣的發明仍會被認定為具有新穎性。而若此新用法或用量之醫藥發明相較於先前技術,其所產生之更有利效果,為發明當時相關技術領域具有通常知識者所可預期者,則此發明將不具備可專利性要件所要求之進步性,而無法獲得專利保護;反之若此新用法或用量之醫藥發明產生之有利效果,為超出發明當時相關技術領域具有通常知識者所可預期範圍之顯著效果,則此發明之進步性便會被肯認。因此,新版專利審查基準不僅言明了新用法或用量之醫藥發明可專利性要件審查之判斷標準,也明確將此類型之發明納為可受專利保護之標的。
本文為「經濟部產業技術司科技專案成果」
日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟通過最新基因改造生物指令,並堅持產品標示歐洲議會於今(2015)年1月13日通過最新決議(10972/3/2014 – C8-0145/2014)「修正2001/18/EC歐洲議會與理事會指令,關於會員國限制或禁止境內進行基因改造生物耕作之可能性」(Directive of the European Parliament and of the Council amending Directive 2001/18/EC as regards the possibility for the Member States to restrict or prohibit the cultivation of genetically modified organisms (GMOs) in their territory),允許會員國自行決定限制或全面禁止GMO於其國境內耕作,以排除GMO產品。此變革在於,原歐洲議會與理事會2001/18/EC指令、歐洲議會與理事會第1829/2003號決議,允許全歐盟境內使用GMO種子、植物繁殖材料進行耕作;而一旦歐盟許可後,會員國除非有符合歐盟法規定例外,否則不得於其境內再為禁止、限制或障礙。 基於歐洲聯盟「輔助原則」(Principle of Subsidiarity),並考量GMO耕作議題與國家、地區及在地區域土地利用、農業結構與生態維持之關聯度高,其與歐盟GMO產品上市之授權進入內部市場仍有所不同,因此新通過之指令,提供會員國更多裁量彈性,在不影響「歐盟食品安全局」(European Food Safety Authority)之GMO風險評估結果下,會員國在歐盟允許GMO產品上市後,得自行決定是否允許GMO作物於其境內耕作。 由於歐盟與美國之「跨大西洋貿易與投資伙伴協定」(Transatlantic Trade and Investment Partnership),及歐盟與加拿大雙邊自由貿易協定(Comprehensive Economic and Trade Agreement),使歐洲民眾對於GMO產品進入歐洲產生恐慌,且在年初即受到消費者保護團體及農民聯盟之嚴厲批評,因此在前述新通過指令之立場下,歐盟農業委員會委員Phil Hogan在今年1月15日國際綠色週(International Green Week)強調,基於消費者保護,歐盟堅持產品中含有基因改造生物者,皆需進行標示。僅透過條碼掃描才能得知是否為GMO產品,此美國建議之方式仍不符合歐盟規定。
Google宣佈提供無線路由器擁有者可將其定位資料退出Google資料庫之機制全球搜尋引擎龍頭Google被發現於2008年3月至2010年5月間,透過其街道定位服務,違法蒐集位於荷蘭360萬個無線路由器(Wi-Fi routers)之資料。Google因其違法蒐集資料之行為,面臨140萬歐元之罰款。 由於荷蘭相當重視隱私保護之概念,因此Google之作法引起社會之爭議,在荷蘭社會反彈之壓力下,Google於11月15日宣布,同意提供民眾將其住家地點或公司行號之無線路由器識別碼資料退出Google資料庫之機制。路由器之擁有者可透過更改服務設定識別碼(Service Set Identifier, SSID)之方式,退出Google定位服務之資料庫。荷蘭個人資料保護主管機關首長Jacob Kohnstamm認為,Google之舉對於消費者隱私之保護具有正面之幫助。 Google所提供的定位服務主要是透過所蒐集之資訊,提供其開發的Android手機定位服務,利用所蒐集的定位資料使行動電話或者行動裝置之用戶得以定位其所在之位置,並且提供用戶當地氣象以及地圖資訊。除此之外,定位服務也增加Google對鄰近商號之廣告收益。Google實施退出資料庫之機制後,其必須另外以GPS系統進行定位,定位服務可能將發生不精確之情形,另外,也將使得行動裝置因需搜尋衛星訊號而耗費較多電力。Google全球隱私顧問Peter Fleischer指出,事實上Google的定位服務無法辨識個人資料,但Google認為提供退出資料庫機制更增進對於個人隱私之保護。 歐洲各國對於Google所蒐集之無線存取資料皆有隱私保護之疑慮,因此,除了荷蘭外,目前Google也在法國公告提供此項退出機制,未來將進一步於全球實施。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」