歐盟科學與新科技倫理委員會(European Group on Ethics in Science and New Technologies, EGE)在今(2009)年11月18日公布合成生物學(Synthetic Biology)公布相關之倫理、法制與社會議題之意見,其中指出合成生物學具有可大幅降低生技藥品生產成本的極大潛力,但也可能帶來的風險,故應予注意。
對很多人來說,合成生物學是一個相當新穎的概念,經濟合作發展組織(Organisation for Economic Co-operation and Development , OECD)在其所公布的2030生物經濟發展議程中,將其列為最具有發展潛力的新興生物技術之一,近來更被歐美先進國家視為生物技術產業的未來重點發展方向。
根據OECD的定義,所謂合成生物學,是以工程方法為基礎,以改進微生物的新興領域,此技術使設計與建構新生物元件(part)、裝置(device)及系統(system),及對於既存的自然生物系統,使其更具有使用性。合成生物學的目的,在於藉由設計細胞系統,使其具備特定功能,從而消除浪費細胞能量之非期待的產物,以增進生物效率。目前合成生物學與市場較為接近的案例,乃一種將青蒿(sweet wormwood herb)、細菌與酵素等基因、分子路徑(molecular pathway)作結合,製造出可以生產治療瘧疾(malaria)的青蒿酸之細菌,此項開發成功突破過去僅能透過植物青蒿獲得,並產量有限的瓶頸。
正由於看好和成生物學的發展潛力,美國、英國與歐盟都開始對此項技術可能帶來的倫理、法制與社會爭議進行評估,歐盟EGE更公布意見以作為未來訂定法規範時的參考。EGE在意見中表示合成生物學使用於能源技術、生物製藥、化學工業或材料科學等都深具前景,故建議歐盟執委會應對此技術發展給予支持,並在歐盟架構計畫下,以產業利用為前提,給予經費的支持;然也必須重視其ELSI問題,包括使用合成生物產品的安全性、對環境的長期影響、惡意使用之防免、專利與公共財的爭議等,為了解決此等問題,其也要求各會員國必須針對合成生物學的各種議題,加強與民眾、利害關係人及社會的對話。由於我國一直將生技產業視為發展重點,合成生物學關係著生技產業未來發展,其未來發展實不容為我國所忽略。
本文為「經濟部產業技術司科技專案成果」
在越來越多消費者擔心部分企業以進行大數據研究名義竊取、交易或透露個人資料之行為,侵犯消費者隱私情況下,中國政府已要求互聯網企業加強對個人資料之保護;這並非中國當局第一次要求互聯網企業加強數據隱私保護,中國消費者協會(China Consumers Association, CCA)亦曾示警,中國大量智慧型手機應用程式正在蒐集過多個人資料,包括但不限於用戶位置、聯絡人清單及手機號碼。 中國互聯網金融協會(National Internet Finance Association of China, NIFA)於 11月初發表聲明提及:「未經消費者同意,會員組織不得蒐集、利用或向第三方提供消費者個人資料。」、「所有會員機構都應承擔保護個人資料之個人責任。如發生問題,應立即予以改善並報告給協會……消費者風險警示亦應加強。」,該協會亦向所有會員機構提出警告,對數據隱私之改善措施應承擔個人責任。 中國互聯網企業讚揚AI工具可使用海量數據以增強消費者體驗之優點,然它們不得不靈活應對消費者對如何蒐集與利用個人資料日益增長之焦慮,而中國政府目前正起草制定有關個人數據隱私保護法律,以解決日常生活伴隨著多方數位體驗而生之敏感問題。
RFID應用發展與相關法制座談會紀實 新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。