日本於2017年12月26日「第2次再生能源及氫氣等閣員會議」中,作為跨省廳之國家戰略,訂定「氫燃料基本戰略」(下稱「本戰略」),2050年為展望,以活用及普及氫燃料為目標,訂定至2030年為止之政府及民間共同行動計畫。此係在2017年4月召開之「第2次再生能源及氫氣等閣員會議」中,安倍總理大臣提出為了實現世界先驅之「氫經濟」,政府應為一體化策略實施,指示於年度內訂定基本戰略。為此,經濟產業省(下稱「經產省」)邀集產官學專家,召開「氫氣及燃料電池戰略協議會」為討論審議,擬定本戰略。其提示出2050年之未來之願景,從氫氣的生產到利用之過程,跨各省廳之管制改革、技術開發關鍵基礎設施的整備等各種政策,在同一目標下為整合,擬定過程中有經產省、國土交通省、環境省、文部科學省及內閣府為共同決定。 氫燃料基本戰略之訂定,欲解決之兩大課題: 第一,能源供給途徑多樣化及自給率的提高:日本94%的能源需依靠從海外輸入化石燃料,自給率僅有6-7%,自動車98%的燃料為石油,其中87%需從中東輸入。火力發電場所消費的燃料中,液態天然氣(LNG)所佔比例也在上升中,而LNG也幾乎全靠輸入。 第二,CO2排出量的削減。日本政府2030年度之CO2排出量預定比2013年度削減25%為目標。但是,受到東日本大地震後福島第一核能發電廠事故的影響,日本國內之核能電廠幾乎都停止運轉,因此LNG火力發電廠的運轉率也提高。LNG比起煤炭或石油,其燃燒時產生CO2之量較為少,但是現在日本電力的大部分是倚賴LNG火力發電,CO2排出量仍是增加中。 因此本次決定之氫燃料基本戰略,係以確實建構日本能源安全供給體制,並同時刪減CO2排出量為目標,能源如過度倚賴化石燃料,則係違反此二大目標,因此活用不產生CO2的氫燃料。但是日本活用氫燃料之狀況,尚處於極小規模,或者是實驗階段。把氫燃料作為能源之燃料電池車(FCV),其流通數量也非常少,而氫燃料販賣價格也並非便宜。 氫燃料戰略之目標係以大幅提高氫燃料消費量,降低其價格為目的。現在日本氫燃料年間約200噸消費,預定2020年提高至4000噸,2030年提高至30萬噸,同時並整備相關商用流通網。為了提高氫燃料消費量,需實現低成本氫燃料利用,使氫燃料之價格如同汽油及LNG同一程度之成本。現在1Nm3約為100日圓,2030年降低至30日圓,最終以20日圓為目標,約為目前價格之5分之一為目標,在包含環境上價值考量,使其具備與既有能源有同等競爭力。 實現此一目標需具備:1.以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈;2.燃料電池汽車(FCV)、發電、產業利用等大量氫燃料利用及技術之開發。 以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈 透過活用海外未利用資源,以澳洲之「褐碳」以及汶萊之未利用瓦斯等得製造氫,目前正在大力推動國際氫燃料供應鏈之開發計畫。水分含量多之褐碳,價格低廉,製造氫氣過程中產生之CO2,利用目前正在研究進行中之CCS技術(「Carbon dioxide Capture and Storage,CO2回收及貯留技術),將可製造低廉氫氣。為了將此等海外製造之氫氣輸送至日本,使設備大規模化,並開發特殊船舶運輸等,建立國際氫燃料供應鏈。再生能源採用的擴大與活化地方:再生能源利用擴大化下,為了確保能源穩定供應,以及有必要為剩餘電力之貯藏,使用過度發電之再生能源製造氫燃料(power to gas技術)而為貯藏,為可選擇之方法,目前正在福島浪江町進行相關實證。 燃料電池汽車、發電、產業利用等大量氫燃料之利用 (1)電力領域的活用:前述氫氣國際供應鏈建立後,2030年商用化實現,以17日圓/kwh為目標,氫燃料年間供應量約30萬噸左右(發電容量約為1GW)。未來,包含其環境上價值,與既有LNG火力發電具備相等之成本競爭力為目標。其供應量。年間500萬噸~1000萬噸左右(發電容量16~30GW)。2018年1月開始在神戶市港灣人工島(Port Island),以氫作為能源,提供街區電力與熱能,為世界首先之實證進行。 (2)交通上之運用:FCV預計至2020年為止,4萬台左右之普及程度,2025年20萬台左右,2030年80萬台左右為目標。氫氣充填站,2020年為止160站、2025年320站,2020年代後半使氫氣站事業自立化。因此,管制改革、技術開發及官民(公私)一體為氫氣充填站之策略整備,三者共同推進。 燃料電池(FC)巴士2020年引進100台左右、2030年為止1200台左右。(FC)燃料電池堆高機2020年引進500台左右,2030年1萬台左右。其他如:燃料電池卡車、燃料電池小型船舶等。 (3)家庭利用:家庭用氫燃料電池(ENE FARM),係以液態瓦斯作為能源裝置,使用改質器取得氫,再與空氣中氧發生化學變化,產生電力與熱能,同時供應電力與熱水。發電過程不產生CO2,但是改質過程抽出氫時,會排出CO2。降低價格,使其普遍化為目標,固體高分子型燃料電池(PEFC)在2020年約為80萬日圓,固態酸化物燃料電池(SOFC)約為100萬日圓價格。在集合住宅及寒冷地區、歐洲等需求較大都市,開拓其市場。2030年以後,開發不產生CO2之氫燃料,擴大引進純氫燃料電池熱電聯產。 其他例如: (4)擴大產業利用。 (5)革新技術開發。 (6)促進國民理解與地方合作。 (7)國際標準化作業等。 此一氫燃料戰略之推行下,本年3月5日為了擴大普及FCV,由氫氣充填營運業者、汽車製造業者、金融投資等11家公司,共同進行氫氣充填站整備事業,設立「日本氫氣充填站網路合作公司(英文名稱:Japan H2 Mobility,下稱「JHyM」)」,加速並具體化氫氣充填站之機制,今後以JHyM為中心,推動相關政策與事業經營。預定,本年春天再設立8個充氣站,完成開設100個氫氣充填站之目標。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
VIZIO將為該公司為未獲消費者允可即蒐集收視行為等個人資料支付和解金。美國聯邦貿易委員會(Federal Trade Commission, 以下稱FTC)在2017年2月6號於其網站中公布, VIZIO, Inc.(以下稱VIZIO),世界最大的智慧電視製造商之一,在未取得購買該公司產品之千萬餘名消費者同意下,即於所生產之智慧型電視中,安裝蒐集消費者收視行為數據之軟體,然此舉業涉及違反美國聯邦貿易委員會法第45條(15 U.S.C. § 45 (n))以及紐澤西州消費者欺詐法(New Jersey Consumer Fraud Act)。為此VIZIO將支付和解金與美國聯邦貿易委員會及紐澤西州檢察總長辦公室。 本案起訴狀內容指出,VIZIO及其相關企業於2014年2月起便開始於其製造之智慧電視中獲取消費者在收視有線電視、寬頻、機上盒、DVD播放機、無線廣播以及串流裝置等相關影像資料時之資訊。這些資訊包含了性別、年齡、收入、婚姻狀況、教育程度、住屋資訊等交付與VIZIO、第三方及其相關企業做為行銷、發送特定廣告使用。 起訴狀中並稱該公司所謂之智能互動機制,雖可做為協助節目製作和建議,卻也同時於未對消費者詳細說明之下,逕行蒐集相關收視資訊,而此類追蹤消費者資訊屬不公平且欺騙的行為,已違反了FTC與紐澤西州對於消費者保護之法律。 為達成本案之和解,該公司願支付兩百二十萬美元作為和解金,包含向FTC繳納的一百五十萬美元及一百萬美元罰款與紐澤西州消費者事務所。聯邦法院命令並要求VIZIO必須清楚揭露其蒐集資料及分享給他方單位之行為,並取得消費者明示同意;另一方面,該命令亦禁止VIZIO對他們所蒐集消費者之隱私、安全及機密性資訊做誤導性的不實陳述以及刪除於2016年3月1日前所有以不當方式取得之消費者個人資料。該公司尚須接受兩年一次的隱私權安全保障計畫(名詞),包括全面性隱私風險評估、識別消費者個資之潛在不當使用情形,並制訂相關措施來修復這些風險。另新增一項銷售管理計畫,以確保該公司產品經銷商及售後服務均能就消費者個人資料得到保障。 此次事件而言,和解金雖非屬可觀之金額,然重點在於作為世界最大的智慧電視製造商之一的VIZIO,經揭露此一訊息後對其商譽之影響,或許才是最大的打擊。為了在大數據時代中能有效的管控法律風險,任何蒐集消費者行為等個人資料時,均應符合相關法令的規範,如建立個人資料保護機制並事前告知取得消費者蒐集之同意為宜。
瑞士洛桑管理學院發布2020智慧城市指數報告瑞士洛桑管理學院(International Institute for Management Development, IMD)於2020年9月18日發布2020智慧城市指數報告(Smart City Index 2020)。該報告為IMD和新加坡科技設計大學(Singapore University of Technology and Design, SUTD)共同出版,該報告評比109個城市,前5名智慧城市分別為:新加坡、赫爾辛基(芬蘭)、蘇黎世(瑞士)、奧克蘭(紐西蘭)、奧斯陸(挪威)。其他重要城市排名包括紐約第10、倫敦第15、香港第32、首爾第47、巴黎第61、東京第79、上海第81名等。 報告中智慧城市五大評比關鍵標準分別為:健康與安全(health and safety)、運輸及交通(mobility)、城市活動(activities)、機會(opportunities)和政府治理(governance)。每個標準又可區分為「結構面」(Structures)和「科技面」(Technologies)各20個細項評比,前者包含如城市基礎衛生、空氣汙染、醫療設備充足程度、交通擁塞度、綠地空間、文化活動、就業率以及居民和政府機關的互動度等;而後者則包含免費公共WIFI普及度、電子設施使用便利度(例如以空氣汙染偵測、安排醫療活動、文化活動線上購票和共享乘車以減少交通擁塞等)、大眾運輸動態資訊及其他電子化服務等。 今年評比的重點之一,在於城市「科技面」指標如何因應COVID-19此種大型傳染病。智慧城市的發展對傳染病有重要防禦作用,排名較前段的城市相對能以科技應對災難型傳染病。此外,報告中認為若政府可以行使更多公權力,將可以藉由管理科技為城市居民帶來更多便利生活。從報告整體排名變化中看出「低度發展」城市比先進城市更容易取得大幅度進步,以及世界各國發展「第二城市」的趨勢,例如西班牙畢爾包的排名(24名)較馬德里(45名)佳,英國伯明翰今(2020)年排名較2019年進步12名,而倫敦僅進步5名次。 我國臺北市綜合評比排名第8,在亞太地區高居第2,僅次於新加坡。其中評比標準中,分數較高有免費公共WIFI普及度、醫療服務設備充足、用3C設備預約就診或其他醫療行為的容易度、文化活動線上購票方便度;分數較低的有交通壅塞問題、綠地不足以及政府腐敗與效率不彰等。