歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求

  歐洲資料保護監督官(European Data Protection Supervisor, EDPS)於2009年12月7日,針對歐盟執委會(European Commission)近年所提出關於設立歐盟「自由、安全及司法領域」(area of freedom, security and justice, AFSJ)大型資訊技術系統(IT System)作業管理機構之立法計畫,基於個人資料保護之立場提出正式法律意見。如此一立法計畫順利通過,該機構預計將擔負起包括「申根資訊系統」(Schengen Information System, SIS II)、「簽證資訊系統」(Visa Information System, VIS)、「歐洲指紋系統」(European Dactylographic System, Eurodac)及其他歐盟層級之大規模資訊技術系統之作業管理(operational management)任務。

 

  根據EDPS首長Peter Hustinx表示,由於前述各項系統之資料庫中均包含諸如護照內容、簽證及指紋等大量敏感個人資料,因此儘管設立單一之作業管理機構,可以在相當程度上釐清歐盟各部門職責歸屬及準據法適用之問題,但如此一機構欲取得合法性,其活動範圍及相關責任即必須在立法中獲得明確界定,否則即可能產生個人資料濫用(misuse of personal data)及資料庫「功能潛變」(function creep)之風險。而基於此一分析,Hustinx認為目前執委會之機構立法計畫尚未符合個人資料保護要求。

 

  此外,針對後續立法進程,EDPS建議除應確實釐清該管理機構之活動範圍是否包括整體AFSJ,亦或僅限於邊境檢查及難民與移民事務;執委會與該機構之關聯性與責任等重要問題外,是否可在缺乏相關經驗及實證評估下,即直接將所有歐盟層級之大型資訊技術系統與資料庫歸入該機構管轄,顯然亦有商榷餘地。EDPS就此認為,透過立法界定「大型資訊系統」之範圍,並且採取資料庫分次進入該管理機構責任範圍之方式,應係日後執委會可以努力之方向。

相關連結
※ 歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3210&no=64&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
澳洲法院認為新聞標題不受著作權法保護

FairFax媒體出版公司是澳洲財經評論(Australian Financial Review,以下簡稱AFR)報紙的出版商,控告Lexis Nexis資料庫所提供的ABIX服務,提供不同的來源的每日新聞標題和摘要,包括AFR的新聞),是侵害FairFax新聞標題的著作權,同時,FairFax要求Lexis Nexis停止使用這些文字。 澳洲聯邦法院認為:1.著作權法不保護新聞標題,因為新聞標題太過簡短;2.證據顯示新聞標題並不能做為共同著作的一部分;3.新聞標題非整篇新聞最實質的部份。4.因為LexisNexis所使用的新聞標題可以構成合理使用。澳洲著作權法中,依據使用的性質與目的若使用新聞報導內容,是可以作為合理使用的主張。也就是說即使新聞標題受到著作權法保護,但LexisNexis仍可以主張合理使用,不會有侵害著作權的疑慮。 法官Annabelle Bennet表示:「新聞標題普遍來說就如同書名,太簡單且太短是不能受到著作權法中的語文著作保護。新聞標題的功能像是一篇文章的篇名,也像針對主題用濃縮的方式簡短的敘述,就如同像是一本書的書名長度。普遍來說,新聞標題太過簡短以致於不能被認為是語文著作,就像是標識(LOGO)在著作權法的評價上不夠重要以致於不能作為美術著作,即使這些是花費技能和勞力所創造的。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國明尼蘇達州制定《明尼蘇達消費者個人資料保護法》(Minnesota Consumer Data Privacy Act, MNCDPA),將於2025年7月31日生效

美國明尼蘇達州通過的《明尼蘇達消費者個人資料保護法》(Minnesota Consumer Data Privacy Act, MNCDPA)規範組織應如何合規蒐集、處理及利用個人資料。主要內容有: 一、 適用對象:於明尼蘇達州內經營商業之營利組織(下簡稱企業或資料控制者),或生產製造商品、提供服務予該州居民之企業,且符合下列情形之一者: 1. 在前一年度控制或處理超過10萬筆消費者個人資料。 2. 控制或處理超過25,000筆消費者個人資料,且總營收超過百分之二十五係源自於銷售個人資料者。 3. 高等教育機構(postsecondary institutions)、非營利組織則自2029年7月31日起適用。 二、 消費者權利:賦予明尼蘇達州居民對個人資料的基本權利,且強調消費者不應因行使權利而受歧視。分別為: 1. 近用權:請求瀏覽企業對其所蒐集個人資料,但如導致企業商業機密洩露之虞者除外。 2. 修正權:請求企業修正不正確或不完整的個人資料。 3. 刪除權:請求企業刪除其個人資料。 4. 請求製給複製本:採取可便利取用格式,或資料可攜(Data Portability) 之方式。 5. 選擇退出權(opt out):就個資利用行為,消費者得行使退出權: (1) 為精準行銷之目的(Targeted Advertising); (2) 銷售個人資料; (3) 為資料剖析之目的處理個人資料。 6. 取得企業揭露或提供個資利用之對象清單。 7. 消費者得向企業請求基於特定決策所作成剖析結果之原因,以及消費者未來得據以採取確保不同決策之作為。 三、 企業主要責任與義務: 1. 企業應履行之義務除告知義務、透明度、資料最小化、安全維護措施外,尚須: (1) 依法回應當事人之請求:資料當事人向企業請求查詢、修改及刪除自己的資料,企業接到請求後,應於45天之期限內准駁其請求;必要時得於通知當事人合理事由後,展延一次。 (2) 保存所有申訴與回覆之紀錄至少24個月;除此之外,企業須建立並採行合規政策,包括識別主要負責人,如:首席隱私長(Chief Privacy Officer)。 明尼蘇達州《明尼蘇達消費者資料隱私法》的通過顯示社會對於資料隱私保護方面的重視,除了加強對消費者個人資料的保護,也賦予消費者的權利,使消費者不再屬於被動方,而能夠主動捍衛自己的個人資料隱私。

關於軟體產品的智慧財產權保護建議

  近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。   然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。   綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP