Google的下一步:行動廣告市場

  美國網路搜尋龍頭Google於2009年11月提出一項以7億5千萬美金收購行動廣告網絡商ADMob的計畫,大張旗鼓地準備涉足這個目前於所有廣告型態中,規模相對微小的區域。然而,美國二大消費者團體Consumer Watchdog及Center for Digital Democracy卻不認同這項收購計畫,甚至認為Google此舉將使其於行動廣告市場中形成獨占,以及甚有侵害消費者隱私權的可能,從而向聯邦交易委員會(Federal Trade Commission, FTC)喊話,要求FTC阻止Google此次的商業併購行為。

 

  然而,消費者團體的擔憂亦非毫無道理,蓋Google在網路搜尋與線上廣告均有難以撼動的地位,而ADMob目前在行動廣告市場之佔有率亦為前茅,是故兩者一旦合併,消費者團體認為,Google此舉即是在為自己日後於此一極具發展潛力的市場中,先行買下一席位子。此外,由於GPS技術的發達,Google附加的Google Map定址應用更有可能因其實質跨足提供行動服務而有侵害使用人隱私權的可能。

 

  雖言如此,FTC仍未明確表示對該項交易的意見,此外,無獨有偶地,蘋果電腦對行動廣告的市場亦開始有所行動,根據另一行動廣告服務提供者Quattro Wireless指出,蘋果公司正在計畫其中的細節。由此可見,不論FTC最後的結論為何,資訊業者之於行動廣告的戰爭已經開始。

相關連結
※ Google的下一步:行動廣告市場, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3221&no=64&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

微軟10.6億美元購買AOL專利

  美國線上服務(AOL)找到改善公司資金短缺的問題。主要出售該公司800項並將其他相關專利授權予微軟(Microsoft)使用,共獲得總價10.6億美元。這也使得AOL的生存獲得機會,但也同時減低AOL的價值。   AOL出售專利主要是因為公司股東認為AOL無法利用專利為公司賺得應有的利益,因此出售大多數的專利給微軟,且將留下300項專利權,同時授權予微軟使用,其技術主要為廣告、搜尋、網際網路、多媒體等其他相關專利。   AOL將出售專利所獲得現金收入,大部分提供給股東。消息公佈後,雖微軟股價下降1.1%,而AOL股價卻上漲43%,每股26.2美元。整體而言,微軟期望透過此專利交易,比起AOL更有效率獲取收益,而AOL出售專利的同時,也喪失未來透過這些專利獲得收入的機會;當AOL的股東看似獲得龐大的回饋金,他們也同時失去未來無法預期的更大的利益回饋。   微軟將透過這800件專利新武器迎戰正在進行的科技競爭訴訟。當然微軟不是唯一提出訴訟的公司。近幾年幾家科技公司,谷歌(Google)、甲骨文公司(Oracle)、及蘋果公司(Apple)亦捲入專利訴訟。小型公司在訴訟中往往比較弱勢,但亦有成功的案例。如,微軟需支付專利訴訟賠償金額加上判決訴訟費用,共2.9億美元給I4i公司。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

中鋼開發高效率馬達用鋼片 節省能源

  「京都議定書」要求減少二氧化碳排放量引起各國重視,中國鋼鐵公司已開發高效率馬達用高品級電磁鋼片,可提高馬達輸出效能,節省能源。   中鋼公司六月十四日表示,為因應未來的能源政策趨勢,高效率馬達越來越受到國際間的重視,美國並規定符合效率的馬達才可銷售,我國也實施「三相感應電動機效率管制」措施,規定國內生產及進口的馬達必須是高效率的馬達。國內目前工業用馬達約有六十五萬台,家用馬達約一百萬台;中鋼公司說,依據研究顯示,馬達效率如果提升百分之二,國內每年約可節省用電量約為核能發電廠一部發電主機的發電量。   中鋼公司開發的高效率馬達用電磁鋼片為五十CS四百型與五十CS六百型,約可提升效率兩成,目前已可量產,對環保和節能有很大效益。

TOP