美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。
為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。
The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。
愛爾蘭資料保護委員會(Ireland's Data Protection Commission)於今(2020)年2月公布控制者資料安全指引(Guidance for Controllers on Data Security),愛爾蘭資料保護委員會表示本指引亦適用於資料處理者。指引內針對17個面向說明控制者於資料處理時應考量之安全措施,分別為:(1)資料蒐集與留存政策(Data Collection and Retention Policies);(2)存取控制(Access Controls);(3)螢幕保護程式(Automatic Screen Savers);(4)加密(Encryption);(5)防毒軟體(Anti-Virus Software);(6)防火牆(Firewalls)(7)程式修補更新(Software Patching);(8)遠端存取(Remote Access);(9)無線網路(Wireless Networks);(10)可攜式設備(Portable Devices);(11)檔案日誌及軌跡紀錄(Logs and Audit Trails);(12)備份系統(Back-Up Systems);(13)事故應變計畫(Incident Response Plans);(14)設備汰除(Disposal of Equipment);(15)實體安全(Physical Security);(16)人為因素(The Human Factor);(17)認證(Certification)。 此外,愛爾蘭資料保護委員會還強調,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第25條與第32條有關資料控制者之義務,可透過「從設計與預設機制著手資料保護(Data protection by design and by default)」,與適當的技術及組織措施等方式,並考量現有技術、執行成本、處理之本質、範圍、脈絡及目的與對當事人權利及自由之風險可能性與嚴重性等因素,以確保其安全措施符合相應資料風險之安全等級。 最後,愛爾蘭資料保護委員會表示資料控制者更應確保其組織內員工瞭解該等安全措施並確實遵守,資料控制者應於制定其資料安全政策時考量到本指引所列各項目,以履行其保護資料安全之義務。
美國仍有千萬民眾無法接取寬頻網路美國聯邦通訊委員會FCC於2010年7月20 日發布第六次寬頻建設調查報告(Sixth Broadband Deployment Report),指稱「仍有1400萬到2400萬的美國人仍無法接取下載4Mbps、上載1Mbps的寬頻網路服務,並且幾乎沒有可能立即為這些人裝設寬頻網路。」從而FCC在報告中做出了「寬頻網路並未以合理、符合時代需求的方式對全民推廣佈建」(Broadband deployment to all Americans is not reasonable and timely)的結論。 自1996年通訊法(第706節)要求FCC應每年針對「寬頻普及」的狀況進行評估以來,FCC是第六次針對此議題發布調查報告。報告指出,雖然寬頻建設在過去10年中已有顯著的成長,但在如北卡羅萊納州、德州、密西西比州等地的鄉村地區,仍有不成比例的多數民眾並無法接取寬頻網路,因為網路服務提供者在這些區域中看不到佈建寬頻網路的經濟利益。 目前只有65%的美國民眾能在家中接取高速寬頻服務。今年3月公布的「國家寬頻計畫(National Broadband Plan)」,FCC則設定目標,希望利用教育方案和公私合作伙伴策略(public-private partnerships)來推動網路的基礎建設,在2020年前達到90%美國民眾可在家接取高速寬頻服務的目標。為此,FCC將重整普及服務基金,引進創新策略釋出新的行動寬頻頻譜、除去對基礎建設(包括路權與電線桿等的接取權)的投資障礙。 值得注意者,這份報告同時將家戶寬頻接取網路的基本速率從2Mbps提升到下載4Mbps、上傳1Mbps。
加拿大「保護加拿大國民遠離網路犯罪法」生效,保障國民免受網路霸凌加拿大對於日益嚴重之網路霸凌及網路犯罪,甚至青少年因網路霸凌而自殺案件頻傳,為免此種悲劇再發生,加拿大政府擬訂之「保護加拿大國民遠離網路犯罪法」(Protecting Canadians from Online Crime Act,簡稱Bill C-13),於2015年3月10日生效。 此項法案係修正刑法、競爭法及證據法,法案內容如下: 1.適用對象:不分是否成年,皆有適用。 2.增修內容: (1) 補充修訂非自願的親密圖片散佈法令,授權法官得從網路上移除這些圖像及收取回復費用,得以沒收財產及下達擔保命令,以限制加害人使用電腦或網路就此類圖像之散布。 (2)賦予保存請求權和命令之權力,強制保全電子證據。 (3)新訂法院可下達提供命令,強制相關義務人提供通訊傳輸、交易位置、個人及相關事物資訊。 (4)授權延長關於使用電信傳輸相關資料之調查權。 (5)授權與法律分配利害關係相關之交易、個人與事物等做為追蹤調查對象。 (6)簡化關於取得關於截取私人通訊之法官授權及命令程序。 (7)修訂加拿大證據法,以確保加害人之配偶得為被害人證人。 惟就本次修訂,有反對意見認為可能會擴張國家調查權,而侵害人民隱私。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。