德國聯邦網絡管理局將於四月拍賣800 MHz等頻譜供4G使用

  德國聯邦網絡管理局(Bundesnetzagentur,BNetzA其職權類似目前我國之交通部)將於2010年4月12日展開針對800 MHz、1.8 GHz、2 GHz及2.6 GHz四大頻段中的部分頻譜拍賣,以供電信服務無線網路接取之用─特別是供4G技術使用;惟競標者僅有既存的四大電信營運商:Deutsche Telekom、Vodafone、KPN’s E-Plus(該公司成立一百分百控股公司獨立參與投標) 以及Telefónica O2,並無新進業者投標,明顯欠缺多樣性(diversity)。

 局長Matthias Kurth表示,曾收到兩家業者有意參與競標的訊息,但其中一家營運商並未符合相關投標資格,而無法參與拍賣;另一家則已表明退出競標拍賣程序。

 

  前揭四大頻段原屬軍方或傳統廣播電視業者所使用,屬歐盟所謂之數位紅利(digital dividend)之頻段已清空待價而沽。其中最受矚目者乃電波物理特性極佳的800 MHz頻段,特別適合於4G通訊技術之用,能在偏遠地區與都會遮蔽密度高之地區展現良好的覆蓋率及滲透率。

 

  歐美地區皆已陸續進行廣電數位化(DSO)及數位紅利頻譜拍賣或制訂相關使用規則,以提升無線網路接取的便利性與普及性,強化國內資通訊產業競爭力。惟德國電信產業似乎與我國目前情況類似,為既有電信營運商寡占頻譜使用及相關服務市場,與美國700 MHz拍賣結果大異其趣,商業價值是否亦為德國頻譜釋出之重要考量,後續發展頗值得注意。

相關連結
※ 德國聯邦網絡管理局將於四月拍賣800 MHz等頻譜供4G使用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3261&no=67&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
美國推動L Prize獎勵創新節能照明產品技術研發

  美國能源部依據「2007年能源獨立與安全法案」(The Energy Independence and Security Act (EISA) of 2007)第655條規定,設立Bright Tomorrow Lighting Prize (L Prize)競賽,這是第一個由美國政府所發起的科技競賽。此一規定係依據「2005年能源政策法」(Energy Policy Act of 2005)第1008條而來,賦予能源部對於與其政策目的相關、有重大貢獻的科技研發或商業應用,得設置競賽活動並提供獎金。因此,為了促進照明產業的發展,而固態照明(solid-state lighting)科技是具有潛力能減少照明能源的使用以達解決氣候變遷的方式之一,因此能源部希望在固態照明技術的研發上扮演催化者的角色,藉由此一競賽來刺激研發超效能固態照明產品以取代傳統照明設備。   此一規定對工業的發展造成挑戰,因為將會取代兩種日常生活所使用的產品:60W白熾燈泡與PAR 38滷素燈泡。於2008年5月首先展開的是60W白熾燈泡領域,因為此種燈泡是消費者最普遍使用的,約佔美國國內白熾燈泡市場的一半。要獲得此獎項的要求,必須該替代產品要能使用低於10W的電力,節省83%的能源。該競賽已於2011年8月結束,由Philips Lighting North America所研發的高效能LED產品獲得,除頒發一千萬美元的獎金外,亦已與聯邦政府簽署採購合約。該產品預計於2012年春於零售商店上架。   L Prize的第二階段競賽於2012年3月展開,希望針對PAR 38滷素燈泡領域,鼓勵企業研發LED替代產品,來取代通常使用於零售商店或戶外安全照明的聚光燈和探照燈等傳統PAR 38滷素燈泡。此一競賽獎勵對於全美的照明產業是相當好的挑戰,不僅能研發出創新、具有高效能的產品,亦能提升美國製造業的競爭力。目前全美國約有九千萬個PAR 38滷素燈泡,若能以高效能燈泡取代,能源部預估每年可以節省約11terawatt-hours的電力,並可減少七百萬噸的碳排放。   要贏得L Prize的產品必須通過嚴格的測試,包括其性能、品質、壽命、價格及是否適合量產等。由於在PAR 38滷素燈泡領域,至少必須製造50%的LED燈泡,且所有的組裝都須在美國完成,因此同時亦提供相當多的工作機會。

受傷的機車騎士就機器自動駕駛的車輛控訴過失駕駛

  美國通用汽車公司(General Motors,下稱通用汽車)於2018年01月間向美國運輸部(United States Department of Transportation)遞出請求展示雪弗蘭(Chevrolet)第4代自動駕駛車(此款車種無裝備方向盤與踏板,號稱世界上第一輛可以自我安全駕駛,且無需人類介入駕駛的車輛)的申請,不久後關於以下車禍事件的訴訟即遭提起。   根據Oscar Willhelm Nilsson(即原告,下稱Nilsson)於2018年01月22日向美國舊金山區地方法院針對前開車禍事件提起訴訟的主張,於2017年12月07日早上,其在加州舊金山Oak Street的中央車道上騎乘機車往東行駛,Manuel DeJesus Salazar(即被告,下稱Salazar)於同時地駕駛由通用汽車製造之Chevrolet Bolt vehicle(下稱自駕車),並開啟自動駕駛模式且雙手放開方向盤。Nilsson原騎乘於自駕車後方,不久,自駕車自Nilsson正前方變換車道至左側,Nilsson則繼續筆直前行,但自駕車又隨即往回駛入Nilsson直行騎乘的車道,因此撞擊Nilsson摔倒在地。據此,Nilsson主張通用汽車公司欠缺對於自駕車的自我操作應符合交通法規及規定所賦之注意義務,換言之,自駕車前揭操作車輛駕駛的行為(未注意其他正在行駛的駕駛人而轉換至比鄰車道)具有過失,造成Nilsson受到嚴重的生理及心理損害,且無法工作,產生高額的醫療、護理費用,故請求法院判決原告即Nilsson之主張不少於7萬5千美元之損害賠償、懲罰性損害賠償、律師委任費用以及其他適當且公正之侵權損害賠償等有理由。   然而,根據先前加州車輛管理局所提之文件,通用汽車對Nilsson所描述之車禍經過提出了以下爭執,通用汽車表示自駕車側面有一條長磨損痕跡,應是當時右邊的車道正要匯入中央車道,而自駕車正在自我校正回車道中央,Nilsson卻騎乘機車從兩個車道中間切出來,導致與自駕車發生擦撞。此外,案發當時自駕車的時速為了順應車流而保持在每小時12英里(每小時19公里)行進,而摩托車卻是以大概每小時17英里(每小時27公里)行進,故自駕車應無不當駕駛之情形,反應由機車騎士Nilsson負擔肇事責任,因其未在確認安全之情況下,即從自駕車右側超車,以上通用汽車反駁Nilsson主張的結論,更與舊金山警察局的報告結果不謀而合,即舊金山警察局認為Nilsson在確定安全以前,就嘗試要超越自駕車。   此外,在前開訴訟提起前的2018年01月14日至01月20日的當週,加州車輛管理局表列出自2014年至2018年間的54起自動駕駛車意外報告,大部分的狀況係由駕駛人(而非自動駕駛車本身)對事故負責(雖開啟自動駕駛模式,但駕駛人仍在特定條件下需要自行駕駛)。   即便前開各個報告看似不利Nilsson,但Nilsson的律師Sergei Lemberg卻表示警方的報告應是有利Nilsson,因自駕車早在車禍發生前就已經發覺Nilsson,但卻沒有預留足夠的時間剎車與閃避,因此通用汽車公司所稱之主張並不足採信,更可見自駕車的行為是危險且難以被預測的。   就此,一位南加大研究自駕車法律問題的法律系教授Bryant Walker Smith表示,未來發生事故的時候,駕駛人在大多數的狀況下比較不會被苛責,但自動駕駛系統會被檢討應該可以做得更完善。 (註:本件訴訟仍在繫屬中,尚未判決。)

淺談創新應用服務(OTT)之創新與規範課題

淺談創新應用服務(OTT)之創新與規範課題 科技法律研究所 法律研究員 蔡博坤 2015年05月26日   隨著資通訊科技快速的發展,例如網際網路、雲端運算、智慧聯網、巨量資料、4G/5G等等,創新應用服務(Over-the-top, OTT)已逐漸包含各種基於網際網路之服務與內容。此科技應用的服務應如何在現行法律規範體系下被論及,其本身以及衍生的議題復為何,均為所欲介紹的核心,本文係以美國作為觀察之對象,希冀對於我國未來在OTT領域之法制有所助益。 壹、美國FCC對於創新應用服務(OTT)的態度觀察   在美國,聯邦通訊委員會(Federal Communication Commission, FCC)係美國境內主管電信與通訊領域聯邦層級的主管機關,對於網際網路上之新興應用服務,為鼓勵新興技術的發展,一向以避免管制為原則,也因此一些OTT TV或VoIP之商業模式,近年來無論係在美國境內抑或境外,皆有著長足的發展。另一方面,隨著科技快速變遷,FCC亦與時俱進持續透過公眾諮詢,尋求是否有調整相關定義,抑或擴張規範管制之必要。例如,2014年12月,FCC發布一個法規修訂公開意見徵集的通知(Notice of Proposed Rulemaking, NPRM),希冀更新目前於1934年通訊法(Communications Act of 1934)下之相關規範,以反映目前透過網際網路所提供的影音服務,特別將更新對於Multichannel Video Programming Distributor(MVPD)一詞定義。 貳、關鍵之法制課題   由於FCC在創新應用服務(OTT)領域市場管制者(market regulator)的角色乃至關重要,同時,提供此應用服務的業者,無論係電信業者還是新興科技業者,其彼此間相互且複雜之法律關係,所衍生之法制議題,實有必要探討以及釐清,謹就兩個層面的問題概述如下:   關於第一個層次網路中立(Net Neutrality)的議題,從相關案例實務判決觀察,2014年2月,美國有線寬頻業者Comcast即以頻寬有限資源,以及確保網路流量充足的理由,說服Netflix服務營運商,同意因此付費給Comcast,而雙方所進行之合作,也引起所謂網路中立性的爭議課題。今(2015)年2月,FCC於最新通過的Open Internet Order,有別於過往命令僅能有限度地適用於行動網路服務業者(mobile broadband),新的命令將能全面性地適用於固網以及行動網路業者,反應近年來在無線寬頻網路科技之快速進展,將擴張保護消費者近取網際網路的方式。   其次,觀察目前美國境內OTT的業者,包括Now TV、Netflix、Ditto TV、Whereever TV、Hulu、Emagine、myTV等,均有建置整合平台,俾利提供消費者新型態的商業服務,從知名Netflix公司所建構的平台政策,相關重要的規範課題包含資料的蒐集、處理與利用,也提到對於安全性的重視與兒少保護等。在相關隱私權議題面向,其指出,由於使用者得通過不同的媒介透過網際網路近取相關服務,誠是些來源皆有各自獨立之隱私權聲明、注意事項與使用規約,除了提醒用戶應盡相關的注意義務外,相關衍生的責任亦會予以劃清。 參、簡評   從上述可得知,創新應用服務(OTT)整體之發展,係與網際網路(Internet)相關推動工作係一體的,因此,我國未來如欲推動OTT相關創新服務,相關網際網路所衍生的議題,例如網路中立等,勢必將成為重要的法制層面所亟需探究之課題。   在我國,如同美國聯邦通訊委員會(FCC)角色之行政主管機關係國家通訊傳播委員會(NCC),在主管的法令中,目前依據電信法相關規範,電信事業應公平提供服務,除另有規定外,不得為差別處理(第21條);無正當理由,第一類電信事業市場主導者不得對其他電信事業或用戶給予差別待遇,抑或不得為其他濫用市場地位或經主管機關認定之不公平競爭行為(第26-1條)。   相關法律條文規範是否可因此援引作為討論創新應用服務(OTT)之法源基礎,復如何調和第一類電信事業市場主導者與新興應用服務科技業者之關係,仍存在著灰色地帶。從鼓勵產業創新之觀點出發,謹初步建議從正面的立場,鼓勵相關創新應用發展,宜避免逕就OTT服務過度管制。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP