泰國計畫拍賣下世代行動通訊頻譜

  根據外電報導,泰國政府目前正在規劃,將越過3G標準,直接以拍賣方式釋出3張執照給更先進、俗稱3.9G的行動通訊技術,可能的時間點為今年9月。

 

  泰國國家電信委員會(National Telecommunications Commission)委員 Pana Thongmeearkom於2010年5月27日表示,相較於3G技術,3.9G的技術可以提供消費者更好的資料傳輸服務;規劃釋出的執照將以15MHz為單位,期限為15年,規劃釋出的頻段主要為2.3GHz,但2.5GHz亦為另一個可能釋出的頻段。

 

  2.3GHz目前由國營的電信業者TOT&CAT與軍方使用中,2.5GHz則由廣播電視業者使用;泰國政府預計於年底提出清空頻譜方案。

 

  各界評估新的頻譜將允許業者佈建以LTE為基礎的電信設備。泰國三家主要行動電信業者Advanced Info Service(AIS)、Total Access Communication(DTAC)與True Move早已表態將參與競標。

 

  泰國政府之前曾多次宣布將展開3G執照競標計畫,惟時程不斷被推遲,外界歸咎於欠缺一個整合性的獨立頻譜監理機構。對此,Pana被迫給予保證,目前泰國的政治紛亂不會影響國家電信委員會的時間表,但如果設立一個可同時監管廣電與電信頻譜的獨立機關的草案未能通過國會立法程序,釋照程序確實有可能被中斷。

 

  LTE行動通訊技術爭取應用的頻段,在歐洲主要為2.1GHz、2.5GHz、900MHz、與800MHz,在北美為700MHz,在日本為2.1GHz。根據國際電信聯合會ITU的頻譜分配建議,相關頻段多為傳統被劃歸為廣電用途的頻段;對沒有獨立頻譜監理機制的國家而言,相關頻譜的收回與再釋出均可能面臨如泰國政府一樣的挑戰。

相關連結
※ 泰國計畫拍賣下世代行動通訊頻譜, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3299&no=67&tp=1 (最後瀏覽日:2025/12/31)
引註此篇文章
你可能還會想看
綠不綠有關係?!-論綠色資料中心及其相關能源效率法制政策

美國聯邦巡迴上訴法院判決 FCC無權要求網路中立性

  2010年4月6日美國聯邦哥倫比亞巡迴上訴法院於Comcast v. FCC一案中,判決美國聯邦通訊傳播委員會(FCC)要求網路服務供應商(ISP )對所有形式資料傳輸一視同仁的「網路中立性」要求係逾越權限,有違法律保留原則。此裁判將為美國大型網路內容提供業者(ICP)的經營模式及網路使用者上網習慣投下震撼彈。   網路中立性(Net Neutrality)係指同一ISP應公平地處理所有網路服務,不得因頻寬需求而有差別待遇。查原因案件乃業者Comcast禁止某些用戶透過網路點對點(peer-to-peer)的方式,傳輸大型影音檔案,其認為用戶這種做法會佔用過多頻寬,拖累其他用戶的網路速度;FCC則認為Comcast此舉違反了網路中立性。   在判決書中,哥倫比亞巡迴上訴法院援引判決先例(stare decisis),認為立法者課予FCC必須對全美人民提供一「公平、有效率、公正分配」的廣電服務。惟本案FCC擅以立法者未明確授權的網路中立性作為規制準則,逾越其管制權限而違法。   FCC發言人Jen Howard表示:「法院沒有道理否定保障網路自由與開放的重要性,也不該阻止其他可促成這個重要目的的方法。」此判決對諸多大力提倡網路中立性的大型ICP業者,無疑是一大打擊;ISP將來也可能對消費者依照資料傳輸流量分級收費(即tiered service),形成新的網路服務發展型態。FCC目前正極力爭取立法者通過「網路中立性法案」尋求管制的合法性,後續發展值得注意。

父母對子女網路使用法律責任之相關德國判決-由『國小生轉貼 YouTube 連結被控侵害著作權』新聞談起

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP