根據外電報導,泰國政府目前正在規劃,將越過3G標準,直接以拍賣方式釋出3張執照給更先進、俗稱3.9G的行動通訊技術,可能的時間點為今年9月。
泰國國家電信委員會(National Telecommunications Commission)委員 Pana Thongmeearkom於2010年5月27日表示,相較於3G技術,3.9G的技術可以提供消費者更好的資料傳輸服務;規劃釋出的執照將以15MHz為單位,期限為15年,規劃釋出的頻段主要為2.3GHz,但2.5GHz亦為另一個可能釋出的頻段。
2.3GHz目前由國營的電信業者TOT&CAT與軍方使用中,2.5GHz則由廣播電視業者使用;泰國政府預計於年底提出清空頻譜方案。
各界評估新的頻譜將允許業者佈建以LTE為基礎的電信設備。泰國三家主要行動電信業者Advanced Info Service(AIS)、Total Access Communication(DTAC)與True Move早已表態將參與競標。
泰國政府之前曾多次宣布將展開3G執照競標計畫,惟時程不斷被推遲,外界歸咎於欠缺一個整合性的獨立頻譜監理機構。對此,Pana被迫給予保證,目前泰國的政治紛亂不會影響國家電信委員會的時間表,但如果設立一個可同時監管廣電與電信頻譜的獨立機關的草案未能通過國會立法程序,釋照程序確實有可能被中斷。
LTE行動通訊技術爭取應用的頻段,在歐洲主要為2.1GHz、2.5GHz、900MHz、與800MHz,在北美為700MHz,在日本為2.1GHz。根據國際電信聯合會ITU的頻譜分配建議,相關頻段多為傳統被劃歸為廣電用途的頻段;對沒有獨立頻譜監理機制的國家而言,相關頻譜的收回與再釋出均可能面臨如泰國政府一樣的挑戰。
因應加密貨幣投資交易盛行,美國貨幣監理局(Office of the Comptroller of the Currency, OCC)於2020年7月22日發布一封解釋函,授權聯邦註冊銀行和聯邦儲蓄協會(federal savings associations)可為客戶的加密貨幣或數位資產提供保管服務,促使銀行持續發揮金融中介功能。此舉將有助於加密貨幣推動發展。 依據解釋函內容,聯邦註冊銀行和聯邦儲蓄協會若從事加密貨幣保管業務,主要注意要點包含必須制定健全的風險管理規範;所提供之服務須與銀行的整體業務計劃和策略一致;須以安全可靠之方式進行,包含建立適當系統以識別、衡量、監控和控制其保管服務的風險;審核帳戶是否符合洗錢防制法令;維持適當有效之內部控制制度;確保銀行所保管之資產與自有資產分開存放,並在共同控制的情況進行維護,以確保資產不會被內部或外部人員損失、毀損或挪用;維護有效之資訊安全基礎架構與控制措施,以減少駭客入侵、竊盜和詐騙;判斷是否需要專門的查核程序;提供可靠的財務報告,以及遵守相關法律規範。 貨幣監理局表示,加密貨幣保管服務,包含持有與加密貨幣相關連的密鑰,屬傳統銀行保管業務的延伸,為銀行業推動現代化營運的表現。隨著金融市場數位化,銀行與其他服務提供商將需要利用新技術和創新方式,以滿足客戶的金融服務需求。
歐盟網路與資訊安全局發布「行動支付與電子錢包安全防護」報告為因應探討並強化網路安全環境,歐盟網路與資訊安全局(European Union Agency for Network and Information Security , ENISA)2016年12月發布「行動支付與電子錢包安全防護」研究報告(Security of Mobile Payments and Digital Wallets)。歐盟網路與資訊安全局ENISA主要係因,近來行動支付興起,利用行動支付方式買賣貨品,係象徵著朝向數位化轉換趨勢,消費者希望透過更便捷的方式購物避免帶著實體錢包和一堆卡片,增加購物的不便。但是使用電子錢包和行動支付並非全然沒有安全疑慮,根據2015年的一項調查,有百分之20的美國消費者對於行動支付的過程中可能遭到有心人士擷取個人資料,這就表示此乃使用行動支付的主要擔心重點,有13%使用者擔心自己的電話遭到駭客入侵。此外根據另一項調查,針對九百名資安專家所做的調查顯示,僅有23%的的人員認為目前現有的安全機制足以防範個資外洩,但有47%的人員認為現有的機制缺乏安全性,但當中也有百分之30的回覆認為現在的安全機制是否安全不能確定。因此,目前而言,安全防護可謂是消費者最關心的重點,且對於安全的疑慮亦使得行動支付沒有辦法大量推行採用。 因此歐盟網路與資訊安全局ENISA於此報告提出了目前經確認的主要威脅有: 行動用戶的安全威脅:任意裝設惡意軟體、釣魚軟體、社交工程軟體。 行動設備威脅:行動設備遭竊或遺失與不當近用。 行動支付與電子錢包威脅:逆向工程、竄改支付軟體、使用在滲透到系統之後,會隱藏登錄項目、檔案或處理序等資源的一種軟體。 消費者威脅:POS惡意軟體、MiTM、重放攻擊。 付款服務提供者威脅:付款系統與資料連結崩潰的疑慮。 支付網路提供者威脅:代碼服務崩潰、拒絕服務。 發行商威脅:付款授權流程崩潰與代碼資料崩潰。 行動支付軟體提供者威脅:機敏個資外洩、雲端客戶資訊管理遭到入侵、代碼服務拒絕。 因此有鑑於行動支付產業目前仍在新興階段,欠缺明確標準,業者間的自主管理顯得相當重要,所以網路與資訊安全局ENISA提出了一些得以遵循的建議與標準: 消費者在使用行動支付的服務軟體時,必須採取多項最低安全防護措施。 行動主機提供業者應該確保軟體定時更新,並且修補安全上的漏洞,針對安全性與近用用戶資料的可能性部分加強。 行動支付的應用程式提供者,應該再提供服務給消費者時,同時提供消費者資訊,本應用軟體做了何種安全防護,供消費者知悉。 行動支付業者應當建立詐騙監控機制。 網路與資訊安全局ENISA提出上述建議與標準,主要係希望業者採用這樣的標準或好習慣的建議後,可以對於消費者、零售商、銀行等業者產生益處。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。