德國電信監理機關Bundesnetzagentur (BNetzA)於2010年5月宣告完成包括800MHz、1.8GHz、2GHz和2.6GHz等多頻帶中共計41塊頻段的頻譜拍賣,成為歐洲第一個完成數位紅利頻譜重分配的國家。
本次拍賣主要由四個行動營運商(E-Plus、T-Mobile、Vodafone、O2)參與投標,歷經224回合競標,挹注政府約43.8億歐元收入,遠低於之前預估的80億歐元,也遠低於10年前的3G頻譜500億歐元。
只有三家業者(T-Mobile、Vodafone、O2)取得數位紅利800MHz頻譜使用權;未得標的E-Plus公司則早已表達意願,將租用其中一個得標者的新網路頻寬,以使用數位紅利。
本次拍賣並沒有產生新的市場參進者,此狀況讓那些希望開放新頻譜即可刺激新的市場競爭的人頗為失望。惟BNetzA以為,目前市場上已經有約100家的MVNO業者和為數眾多的次品牌服務經營者在競爭,監管機關看不出應執行拍賣條款中「應有利新的市場參進者」的理由。
市場主導者T-Mobile已經宣稱,將率先於今年開始利用800MHz測試發展LTE服務。但由於在800MHz段部署LTE網路將與歐洲其他國家(主要指TeliaSonera公司在瑞典和挪威)早先同意於2.6GHz佈建的網路技術有異,而在密集的城市環境中,在800MHz與2.6GHz頻段同時部署LTE被視為是相當理想的網路佈建策略,歐盟現階段正在想辦法調和兩個頻段的和諧使用策略中。
歐盟理事會與歐洲議會於2020年12月14日,針對歐洲軍民兩用出口管制法規《第428/2009號歐盟理事會規章》(COUNCIL REGULATION (EC) No 428/2009)達成修正協議,並獲得歐盟理事會下設常駐代表委員會(Committee of Permanent Representatives, COREPER)認可後正式通過。《規章428/2009》用以規範歐盟軍民兩用出口管制,監管歐盟涉及「軍民兩用」敏感貨品、服務、軟體和技術的對外出口、內部轉口及過境貿易。因兩用貨品包含軍事用途及商用用途,故此次歐盟調整軍民兩用出口管制的相關規則,主要考量面向包括:英國脫歐對歐洲出口管制的影響;如何確保歐盟出口管制條例與國際反武器擴散制度相一致;以及解決網路監管和新興技術帶來的安全威脅等。本次歐洲軍民兩用出口管制修正重點如下: 提升出口管制力度,防止濫用網路監管等新興技術:管制項目具備監視、取得、蒐集或分析資通訊系統資料功能者,因涉及國家內部鎮壓或嚴重違反國際人權和國際人道法(International Humanitarian Law),即使未明列在歐盟軍民兩用法規的附件中,也應加強管制。 新增兩項歐盟一般出口許可證(EU General Export Authorisations, EU GEAs):包括集團內部技術轉讓(EU007)及加密(EU008),允許軍民兩用貨品出口至特定目的地。 統一歐盟軍民兩用貨品規則:例如技術協助屬於特定軍事用途且與軍民兩用相關者須經授權,歐盟成員國得配合擴張軍民兩用貨品清單。 強化企業調查和報告義務,遵守並適用出口管制規則:實施出口及授權作業的出口商,應落實內部合規計劃,確保企業遵守出口管制的政策和程序。 歐盟成員國間加強合作機制:促進資訊交流、政策調整和執法行動。
世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。