英國《海外犯罪資料提供請求法》(Crime (Overseas Production Orders) Act 2019, COPO Act)於2019年2月12日由英國女王御准(royal assent)生效。
過去,英國請求海外證據法源依據僅有〈國際司法互助條約〉(Mutual Legal Assistance Treaties)支撐,且無明確的實施規範可作為依循。隨通訊網路科技日新月異,犯罪及犯罪證據的資料儲存地打破國界。《海外犯罪資料提供請求法》即是給予海外犯罪資料提請求程序一個明確的規範。在與他國簽署條約(designated international co-operation arrangement,指:司法互助條約或英國內閣大臣依法指定的條約)之前提下,《海外犯罪資料提供請求法》授權英國執法機構與相關單位(appropriate officer)可向法院聲請搜索票,並憑藉搜索票請求被搜索自然人或法人,提供儲存於英國境外的電子資料(electronic data)或特種電子資料(excepted electronic data)。本法所稱「電子資料」係指以電子儲存的資料;「特種電子資料」則是指法律專業人士與其客戶的通訊紀錄,或自然人與死者在具有保密義務之情況下所產生的紀錄。
在英格蘭、威爾斯和北愛爾蘭,可依《海外犯罪資料提供請求法》向法院聲請搜索令的相關單位包含:員警(constable)、英國稅務海關總署(Revenue and Customs)、英國嚴重詐欺辦公室(Serious Fraud Office, SFO)、特許金融調查人員(accredited financial investigator)、反恐金融調查人員(counter-terrorism financial investigator)、英國金融行為監理總署(Financial Conduct Authority)依法指定的調查人員或其他內閣大臣所公告之規則所指名的人員。在蘇格蘭則是檢察官(procurator fiscal)、員警、英國稅務海關總署、英國金融行為監理總署依法指定的調查人員或其他內閣大臣所公告之規則所指名的人員。海外犯罪資料提供請求之搜索票有效期間,係獲准當日起算三個月。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會發布《受禁止人工智慧行為指引》 資訊工業策進會科技法律研究所 2025年02月24日 歐盟繼《人工智慧法》[1](Artificial Intelligence Act, 下稱AI Act)於2024年8月1日正式生效後,針對該法中訂於2025年2月2日始實施之第5條1,有關「不可接受風險」之內容中明文禁止的人工智慧行為類型,由歐盟執委會於2025年2月4日發布《受禁止人工智慧行為指引》[2]。 壹、事件摘要 歐盟AI Act於2024年8月1日正式生效,為歐盟人工智慧系統引入統一之人工智慧風險分級規範,主要分為四個等級[3]: 1. 不可接受風險(Unacceptable risk) 2. 高風險(High risk) 3. 有限風險,具有特定透明度義務(Limited risk) 4. 最低風險或無風險(Minimal to no risk) AI Act之風險分級系統推出後,各界對於法規中所說的不同風險等級的系統,究竟於實務上如何判斷?該等系統實際上具備何種特徵?許多內容仍屬概要而不確定,不利於政府、企業遵循,亦不利於各界對人工智慧技術進行監督。是以歐盟本次針對「不可接受風險」之人工智慧系統,推出相關指引,目的在明確化規範內涵規範,協助主管機關與市場參與者予以遵循。 貳、重點說明 一、AI Act本文第5條1(a)、(b)-有害操縱、欺騙與剝削行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統施行操縱與剝削,使他人淪為實現特定目的工具之行為,以保護社會上最為脆弱且易受有害操控與剝削影響的群體。 (二)禁止施行本行為之前提要件 1.該行為必須構成將特定人工智慧系統「投放於歐盟市場」(placing on the market)[4]、「啟用」(putting into service)[5]或「使用」(use)[6]。 2.應用目的:該人工智慧系統所採用的技術具有能實質扭曲個人或團體行為的「目的」或「效果」,此種扭曲明顯削弱個人或團體做出正確決定的能力,導致其做出的決定偏離正常情形。 3.技術特性:關於(a)有害的操縱與欺騙部分,係指使用潛意識(超出個人意識範圍)、或刻意操控或欺騙的技術;關於(b)有害地利用弱勢群體部分,是指利用個人年齡、身心障礙或社會經濟狀況上弱點。 4.後果:該扭曲行為已造成或合理可預見將造成該個人、另一人或某群體的重大傷害。 5.因果關係:該人工智慧系統所採用的技術、個人或團體行為的扭曲,以及由此行為造成或可合理預見將造成的重大傷害之間,具備相當因果關係。 二、AI Act本文第5條1(c)-社會評分行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統進行「社會評分」可能對特定個人或團體產生歧視和不公平的結果,以及引發與歐盟價值觀不相容的社會控制與監視行為。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須用於對一定期間內,自然人及群體的社會行為,或其已知、預測的個人特徵或人格特質進行評價或分類。 3.後果:透過該人工智慧系統所產生的社會評分,必須可能導致個人或群體,在與評分用資料生成或蒐集時無關的環境遭受不利待遇,或遭受與其行為嚴重性不合比例的不利待遇。 三、AI Act本文第5條1(d)-個人犯罪風險評估與預測行為 (一)概念說明 本禁止行為規定之目的,旨在考量自然人應依其實際行為接受評判,而非由人工智慧系統僅基於對自然人的剖析、人格特質或個人特徵等,即逕予評估或預測個人犯罪風險。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須生成旨在評估或預測自然人施行犯罪行為風險的風險評估結果。 3.後果:前述風險評估結果僅依據於對自然人的剖析,或對其人格特質與個人特徵的評估。 4.除外規定:若人工智慧系統係基於與犯罪活動直接相關的客觀、可驗證事實,針對個人涉入犯罪活動之程度進行評估,則不適用本項禁止規定。 四、AI Act本文第5條1(e)-無差別地擷取(Untargeted Scraping)臉部影像之行為 (一)概念說明 本禁止行為規定之目的,旨在考量以人工智慧系統從網路或監視器影像中無差別地擷取臉部影像,用以建立或擴充人臉辨識資料庫,將嚴重干涉個人的隱私權與資料保護權,並剝奪其維持匿名的權利。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為以建立或擴充人臉辨識資料庫為目的。 3.技術特性:填充人臉辨識資料庫的方式係以人工智慧工具進行「無差別的擷取行為」。 4.因果關係:建立或擴充人臉辨識資料庫之影像來源,須為網路或監視器畫面。 五、AI Act本文第5條1(f)-情緒辨識行為 (一)概念說明 本禁止行為規定之目的,旨在考量情緒辨識可廣泛應用於分析消費者行為,以更有效率的手段執行媒體推廣、個人化推薦、監測群體情緒或注意力,以及測謊等目的。然而情緒表達在不同文化、情境與個人反應皆可能存在差異,缺乏明確性、較不可靠且難以普遍適用,因此應用情緒辨識可能導致歧視性結果,並侵害相關個人或群體的權利,尤以關係較不對等的職場與教育訓練環境應加以注意。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該系統係用於推斷情緒。 3.因果關係:該行為發生於職場或教育訓練機構。 4.除外規定:為醫療或安全目的而採用的人工智慧系統不在禁止範圍內。例如在醫療領域中,情緒辨識可協助偵測憂鬱症、預防自殺等,具有正面效果。 六、AI Act本文第5條1(g)-為推測敏感特徵所進行之生物辨識分類行為 (一)概念說明 本禁止行為規定之目的,旨在考量利用人工智慧之生物辨識分類系統(Biometric Categorisation System)[7],可依據自然人的生物辨識資料用以推斷其性取向、政治傾向、信仰或種族等「敏感特徵」在內的各類資訊,並可能在當事人不知情的情況下依據此資訊對自然人進行分類,進而可能導致不公平或歧視性待遇。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為係針對個人進行分類;而其辨識目的係為推斷其種族、政治傾向、工會成員身分、宗教或哲學信仰、性生活或性取向等。 3.技術特性:該系統必須為利用人工智慧,並依據自然人的生物辨識資料,將其歸類至特定類別之生物辨識分類系統。 4.因果關係:前述分類依據為其生物辨識資訊。 5.除外規定:本項禁止規定未涵蓋對合法取得的生物辨識資料進行標記(Labelling)或過濾(Filtering)行為,如用於執法目的等。 七、AI Act本文第5條1(h)-使用即時遠端生物辨識(Remote Biometric Identification, RBI)系統[8]執法[9]之行為 (一)概念說明 本禁止行為規定之目的,旨在考量在公共場所使用即時RBI系統進行執法,可能對人民權利與自由造成嚴重影響,使其遭受監視或間接阻礙其行使集會自由及其他基本權利。此外,RBI系統的不準確性,將可能導致針對年齡、族群、種族、性別或身心障礙等方面的偏見與歧視。 (二)禁止施行本行為之前提要件 1.該行為必須涉及對即時RBI系統的「使用」行為。 2.應用目的:使用目的須為執法需要。 3.技術特性:該系統必須為利用人工智慧,在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之RBI系統。 4.因果關係:其使用情境須具備即時性,且使用地點須為公共場所。 參、事件評析 人工智慧技術之發展固然帶來多樣化的運用方向,惟其所衍生的倫理議題仍應於全面使用前予以審慎考量。觀諸歐盟AI Act與《受禁止人工智慧行為指引》所羅列之各類行為,亦可觀察出立法者對人工智慧之便利性遭公、私部門用於「欺詐與利用」及「辨識與預測」,對《歐盟基本權利憲章》[10]中平等、自由等權利造成嚴重影響的擔憂。 為在促進創新與保護基本權利及歐盟價值觀間取得平衡,歐盟本次爰參考人工智慧系統提供者、使用者、民間組織、學術界、公部門、商業協會等多方利害關係人之意見,推出《受禁止人工智慧行為指引》,針對各項禁止行為提出「概念說明」與「成立條件」,期望協助提升歐盟AI Act主管機關等公部門執行相關規範時之法律明確性,並確保具體適用時的一致性。於歐盟內部開發、部署及使用人工智慧系統的私部門企業與組織,則亦可作為實務參考,有助確保其自身在遵守AI Act所規定的各項義務前提下順利開展其業務。 [1]European Union, REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL (2024), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401689 (last visited Feb. 24, 2025). [2]Commission publishes the Guidelines on prohibited artificial intelligence (AI) practices, as defined by the AI Act., European Commission, https://digital-strategy.ec.europa.eu/en/library/commission-publishes-guidelines-prohibited-artificial-intelligence-ai-practices-defined-ai-act (last visited Feb. 24, 2025). [3]AI Act, European Commission, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (last visited Feb. 24, 2025). [4]依據本指引第2.3點,所謂「投放於歐盟市場」(placing on the market),係指該人工智慧系統首次在歐盟市場「提供」;所謂「提供」,則係指在商業活動過程中,以收費或免費方式將該AI系統供應至歐盟市場供分發或使用。 [5]依據本指引第2.3點,所謂「啟用」(putting into service),係指人工智慧系統供應者為供應使用者首次使用或自行使用,而於歐盟內供應人工智慧系統。 [6]依據本指引第2.3點,「使用」(use)之範疇雖未在AI Act內容明確定義,惟應廣義理解為涵蓋人工智慧系統在「投放於歐盟市場」或「啟用」後,其生命週期內的任何使用或部署;另參考AI Act第5條的規範目的,所謂「使用」應包含任何受禁止的誤用行為。 [7]依據AI Act第3條(40)之定義,生物辨識分類系統係指一種依據自然人的生物辨識資料,將其歸類至特定類別之人工智慧系統。 [8]依據AI Act第3條(41)之定義,RBI系統係指一種在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之人工智慧系統。 [9]依據AI Act第3條(46)之定義,「執法(law enforcement)」一詞,係指由執法機關或其委任之代表,代替其執行目的包括預防、調查、偵測或起訴刑事犯罪,或執行刑事處罰,並涵蓋防範與應對公共安全威脅等範疇之行為。 [10]CHARTER OF FUNDAMENTAL RIGHTS OF THE EUROPEAN UNION, Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT (last visited Feb. 24, 2025).
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
SWIFT與金融業者攜手合作發展區塊鏈電子投票環球銀行金融電信協會(Society for Worldwide Interbank Financial Telecommunication, SWIFT)於今年3月宣布將與德意志銀行、星展銀行、匯豐銀行、渣打銀行、證券軟體供應商SLIB與新加坡交易所(Singapore Exchange,SGX)聯合於亞太地區展開建構於分散式帳簿技術(Distributed Ledger Technology ,DLT)之電子投票概念性驗證(Proof-of-Concept, PoC),探究分散式帳簿技術是否能有效簡化股東權利之行使,以提高市場參與者效率。 目前實務上召集股東會耗費大量人力與時間成本,紙本投票流程繁雜且費時,股東表決權也經常因代理行使錯誤導致無法及時反應股東真意,因此業界希望可以透過將區塊鏈分散式帳簿技術應用於電子投票系統,改善股東會之透明度與自動化程度,提升股東會之效能及股東參與度。 SWIFT表示區塊鏈電子投票概念性驗證將於2019年上半年展開, 旨在體現四大目標: 測試與發行人和證券存託機構(Central Securities Depository)建立的投票解決方案,同時該方案係以許可制的私有鏈(private blockchain)儲存與管理數據資訊。 展現基於ISO 20022所為之混合解決方案之可行性,將訊息之傳遞與分散式帳簿技術結合,促進互通性並避免市場分裂。 電子投票的概念驗證將會在沙盒環境中測試SWIFT的應用程式代管(host)能力。 確認使用ISO 20022作為應用程式介面標準化之基礎,透過應用程式介面將儲存於分散式帳簿節點間資料分享給分類帳。 期望透過區塊鏈技術之應用,以金融創新的解決方案改善傳統上股東會礙於書面投票或代理流程繁瑣之不便利,將區塊鏈技術與ISO標準相互結合,建立系統化之創新電子投票解決方案,促進市場發行者與參與者密切合作。 我國金融監督管理委員會為強化股東權益之保護,落實電子投票制度,於 106年1月18日發布金管證交字第1060000381號函釋:「依據公司法第一百七十七條之一第一項規定,上市(櫃)公司召開股東會時,應將電子方式列為表決權行使管道之一」;又隨著智慧型手機與行動網路普及,電子投票可能成為未來股東會股東表決權行使趨勢之一,此次SWIFT與業界共同提出之區塊鏈電子投票發展或可作為未來我國電子投票實務運作之參考。
營業秘密與競業禁止-簡評臺灣高等法院台南分院102年度上易字第212號判決