繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。
於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。
預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。
英國交通部(Department for Transportation, DfT)於2023年8月30日提出「交通行動服務(MaaS)實務準則(Mobility as a Service: code of practice)」,內容針對MaaS之提供商,提出產品及服務建議。MaaS實務準則涵蓋包含以下五個面向,以提供MaaS廠商具體明確的產品設計及營運建議: 1. 交通包容性與近用性(accessibility),例如應盡力避免產品之AI演算法產生偏見、確保AI學習資料無偏差;產品介面應提供視覺、聽覺輔助功能;針對身障民眾應提供適當之交通路線建議,以及應提供偏鄉、無網路區域非線上(offline)服務管道; 2. 低碳運輸之推廣,如納入更多步行、單車等環保交通選項; 3. 友善之多元支付方式,如現金、數位支付、定期套票,並整合火車、地鐵、客運、公車之支付系統; 4. 資料分享與資料安全並重,保障使用者隱私,如採用公認之資料安全標準以及與同業簽訂資料共享契約; 5. 重視消費者權益保障,鼓勵平台間公平競爭,如釐清各參與者間之責任,避免消費者投訴無門,以及提供線上及非線上聯絡窗口,及時處理消費者需求等。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
開放非銀行事業從事預付式行動付款服務法制議題之研究 韓國國會議員提出著作權法修法,擬導入著作權專業人員國家證照制度尹官石(Youn, Kwan-Suk)等11位韓國國會議員於2013年7月16日提出著作權法修正案,修法內容包括「導入著作權專門士及資格考試等制度」、「增訂著作權保護院設立之法源依據及相關業務規定」、「著作權保護院之審議委員會之組成」、「審議及發出糾正命令之主體變更為著作權保護院」。 韓國國會議員尹官石指出,雖然韓國著作權產業規模逐漸擴大,但據統計,著作權專業人才僅1萬3533位,專業人才明顯仍然不足。再者,著作權小規模訴訟也不斷增加。另外,現在雖有營運核發著作權相關資格證書業務之民間業者,但卻存在廣告誇大、課程內容不實,缺乏事後管理機制等問題,而造成市場混亂。為解決上述問題,韓國著作權法擬導入著作權專業人員之國家資格證照制度,希望藉以有效培育著作權專業人才,讓著作權產業得以健全發展。 另一方面,影視內容和電腦軟體為韓國著作權產業之核心,其所創造之附加價值及就業機會均呈現增加的趨勢,但相對來說,韓國音樂、電影、電視劇等內容常被非法重製,而這樣的非法重製行為造成3兆9758億韓圜之生產利益損失,減少3萬6千個就業機會。對此,為更有效推動著作權保護,並使著作權保護業務推動一元化,藉以促進文化內容產業發展,著作權法擬修法整併現有的著作權保護中心和韓國著作權委員會之功能,改設著作權保護院,以統合著作權保護業務。 在此一著作權法修正案之後,韓國文化體育觀光部及其它議員亦對其它著作權議題,如擴大著作權保護及合理使用範圍等,提出修正案,因此後續韓國著作權法的修法動態,值得持續關注。