美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎

  繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。

 

  於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。

 

  預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。

相關連結
※ 美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3337&no=0&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
數位模擬分身(Digital Twin)

  數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。   於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

美國懷俄明州可望通過新法,鬆綁功能代幣於證券、貨幣傳輸與稅法等限制

  美國懷俄明州眾議院(Wyoming House of Representatives)於2018年2月19日無異議地表決通過HB0070法案,該法案將鬆綁功能代幣(utility token)於懷俄明州證券法(Securities Act)之限制。該法案將送往參議院,若順利通過並經州長簽署核准,將於2018年7月1日生效,使懷俄明州成為友善的區塊鏈投資環境,預計吸引大量新創事業於該州進行首次代幣眾籌(Initial Coin Offerings, ICO)。   該法案針對功能代幣設有三種要件,僅於符合三種要件者始能作為法案所稱的功能代幣,得免受證券法規管。三種要件分別為:一、功能代幣之開發者和發行者不得將代幣作為投資而行銷;二、該代幣須可作為換取商品或服務之對價;三、該代幣之開發者或發行者不得主動進行附買回協議(repurchase agreement)或任何有意操縱代幣二級市場之價格之協議或策劃。   此外,懷俄明州另有三部有關區塊鏈之法案亦正待審議,包含同樣甫經眾議院通過之HB0019法案,使加密貨幣免受懷俄明州貨幣傳輸法(Money Transmitters Act)規範,有望可使加密貨幣在懷俄明州進行交易或交換。此外,正於眾議院進行二審的HB0101法案預計將修正懷俄明州商業公司法(Business Corporations Act),開放公司得使用區塊鏈來儲存資料並進行內部聯繫。又,尚待眾議院審議的SF0111法案預計使加密貨幣免於受州財產稅法之規範。

英國政府宣佈將內化歐盟電子通訊隱私指令,訂定cookie相關規範

  歐盟電子通訊隱私指令(Directive 2002/58/EC on Privacy and Electronic Communications, e-Privacy Directive)針對cookie(即業者為辨別使用者身份而儲存在用戶端上的資料)設置的規範,於2009年修正,將在今年在5月25日之前全面施行。歐盟跟據該項規定,要求業者,當其使用cookie追蹤網路使用者的使用行為時,必須取得網路使用者的「明示同意」,且每隔一年,業者皆必須重新取得該項「同意」,網路使用者亦得隨時撤回。實務上對於該項同意究竟應由業者「主動」要求,亦或「被動」等待網路使用者以允許cookie設置方式而直接視為同意,仍有爭議。   儘管如此,英國政府仍已決定內化該指令,制定其國內cookie設置規範。英國資訊委員會(Information Commission)將提出指導原則,協助業者遵循該規範。相關政府單位,亦已開始著手協助業者重新設定網頁瀏覽器。有關當局表示,英國政府將會在歐盟限定的期限內推動此規範,不過,該歐盟指令係強制規範,業者是否能在短期內完成該規範遵循仍有疑議。針對此點,英國政府已通令其資訊委員會,對於已著手改正其隱私規範並重新設置瀏覽器的業者,即便未於期限內完成該規範遵循,亦不受罰。英國未來實施的cookie設置規範究竟會如何發展,仍待觀察。

TOP