台灣蕨類資源相當豐富,為保存台灣原生蕨類植物資源,我國政府於和平鄉鳥石坑規劃成立「蕨類園」,共蒐集台灣原生種蕨類 32科200多種,經過4年培育,蕨類生長茂盛,是很好的科學研究與生活旅遊教材。根據研究,台灣蕨類共37科、約620種,「蕨類園」的目標希望蒐集300至400種台灣中低海拔原生蕨類,做為種源保存、學術研究與解說教育之用。
蕨類是台灣常見的植物之一,在居家圍牆裂縫或庭園造景的石頭縫裡,就可觀察到鱗蓋鳳尾蕨、劍葉鳳尾蕨、細毛小毛蕨和腎蕨等蕨類,但是大多數民眾對蕨類卻非常陌生,因此該中心擬將蕨類納入社區生態與環境教育介紹的主題,教導參觀者如何欣賞各種蕨類之美。
台灣蕨類資源到底有多豐富?根據形容,台灣蕨類比整個歐洲還多,面績是台灣好幾倍大、且非常喜歡蕨類的紐西蘭,也只有 100多種。在單位面積分布上,台灣堪稱蕨類植物的天堂。因此 , 台灣「蕨類園」之成立將會是台灣生態保育的一個重要里程碑 。
本文為「經濟部產業技術司科技專案成果」
歐洲議會(European Parliament)於2022年1月20日通過數位服務法(Digital Services Act),該法旨在監管線上服務提供者(online service providers),為線上服務接受者提供更安全線上空間,包含要求線上平臺應(1)打擊線上非法服務或內容;(2)提供通知並刪除/下架(notice and action)機制,不得有差別性或任意性對待;(3)提供無廣告追蹤(tracking-free ad)選項,和禁止將未成年人資料用於定向廣告(targeting advertising);(4)對於線上平臺課以行政責任,如:超大型線上平臺(very large online platforms, VLOP)若故意或過失違反義務,最高罰鍰可被處以前一會計年度總營業額6%,或按日連續處罰最高可處前一會計年度平均每日營業額5%。若可能致危害生命或人身安全,主管機關亦可勒令其停止提供服務;(5)強制性風險評估和提高演算法透明度,以打擊有害內容(harmful content)和虛假資訊。 數位服務法所規範的服務主要有四種類型,四種服務提供者負擔累計義務(cumulative obligation),其中VLOP被賦予最多責任,因其對於散布非法內容並造成社會危害具有特殊風險,須具備風險減緩、獨立稽核等機制。相關服務定義如下: (1)中介服務提供(Intermediary Service):提供網路基礎建設服務。 (2)託管服務提供(hosting service):由服務接受者提供資訊並應其要求提供資訊儲存服務,例如:雲端儲存服務、網站主機代管等服務。 (3)線上平臺(online platform):包含類型線上市集、應用程式商店、以及社群媒體平台。 (4)VLOP:每月平均歐盟境內活躍用戶達4500萬以上或人口10%之線上平臺。例如:Google、Facebook及YouTube。 此數位服務法草案最早在2019年年底提出,歐洲議會於今年投票通過後,尚待歐盟理事會(Council of the European Union)審查同意後,此法即正式發布施行。歐洲議會於審查所提出之修正建議,除針對前述五大重點外,還特別強調對於微中小型企業(MSMES)相關義務的免除,以及禁止線上平臺使用欺瞞(deceiving)或助推(nudging)方法影響消費者購物選擇。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
基因改造 70g胖老鼠減重成為40g中研院今天發表一份研究成果:利用「基因改造」,成功的將七十公克的胖老鼠減重到四十公克,而且沒有什麼副作用。未來經過人體實驗,將有機會成為人類減肥的最新方法。 研究團隊發現,脂肪細胞活性與細胞內的粒腺體含量有關,而「粒腺體」就相當於細胞的「火力發電廠」,專門幫助代謝熱量、並轉化為能量供體內使用。當脂肪細胞含有大量粒線體的時候,就可以自行代謝體內所堆積的油脂、健康瘦身。計劃主持人、分子生物研究所副研究員李英惠解釋:利用藥物刺激,可以誘發體內的一種「Gs蛋白」,在老鼠胚胎上進行基因改造,或是後天以藥物餵食老鼠,活化體內GS蛋白質,透過各種方式,証明GS蛋白質的確可以增加脂肪細胞中粒腺體含量和活性,慢慢的代謝掉細胞內堆積的油脂。研究團隊還意外發現,改造後的老鼠,不但不容易發胖,而且平均壽命還增加了20%。 目前動物實驗已經證明:體內具有這種改造過的脂肪細胞,不但不容易發胖,壽命也可以增長。未來經過人體實驗,將有可能成為人類「健康減肥」的最新方法。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。