國內藥廠發起外銷策略聯盟

  經濟部工業局將協助國內製藥業成立「藥廠外銷策略聯盟」,集合藥界力量共同打開外銷市場,希望至少推動十幾個學名藥外銷,而明年外銷產值可達 20 億元,每年成長 20 %,五年後外銷產值可到 100 億元;主要鎖定美、日、歐為主的 PIC/S (國際藥品稽查協合會)市場,由熟悉市場的專家來協助製藥界一起拓展海外市場,目前已有近十家業者有意加入此聯盟。


  由於過去國內藥廠都主攻健保市場,不過未來成長有限,國內藥廠必須積極拓展海外市場,才可以保持競爭力。今年 4 月,日本實施新藥事法後,採取產銷分離,國內製藥業者有機會爭取到代工的機會,工業局將協助國內業者爭取日本代工注射劑、口服液等機會,以及在台採購原料藥和其他藥劑。以歐盟為主的 PIC/S 市場,近年會員增多,美國 FDA 也有意加入,國內藥廠如能爭取成為會員,可以降低藥廠重複檢驗的成本,有利拓銷海外市場。


  國內藥廠拓銷海外市場已漸有成績,如優良藥廠和永光化學合作避孕藥 GyMiso ,與歐洲 HRA 藥廠合作進軍歐盟市場,並順利通過 PIC/S 查核,取得產品製造許可。生達製藥和永信製藥都在美國設廠,努力耕耘美國市場十年後,已開始賺錢,不過仍希望和國內業者合作。南光則已有和日本代工非 PVC 材質注射劑的經驗。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 國內藥廠發起外銷策略聯盟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=411&no=64&tp=1 (最後瀏覽日:2024/11/25)
引註此篇文章
你可能還會想看
世界智財組織尋求保護來自傳統知識與遺傳資源的產品

  長久以來國際藥廠從大量販售的藥物中獲取上億元的營收,例如抗癌藥物與抗瘧藥物,均是萃取自中國的草本植物,但是這些擁有藥物傳統知識與遺傳資源的族群部落(the community),卻只得到相對微薄的報酬。為此,世界智慧財產組織(The World Intellectual Property Organization)已經在過去五年中力圖達成將利益擴及到提供傳統知識與遺傳資源的族群部落。   許多先進國家到非洲、亞洲等地方蒐尋具有療效的植物後,回實驗室進行研發萃取其物質後做成藥物,但卻從來沒有主動的揭露其來源,也不曾主動的回饋其獲利給那些藥廠從中獲得藥物植物的族群部落。開發中國家已試著要去制止這非法的竊用傳統知識的行為。   但由於傳統知識是累積的,因此傳統知識的保護也面臨到如何認定其於何時已存在的困難。因此傳統的智慧財產保護體系對於不能確認個別權利人與權利標的範圍的傳統知識無法提供保護。   不過,世界智慧財產組織表示藥廠已開始關心並參與傳統知識利用的協議,因為這些投資億元於研發而已有成功結果的藥廠,並不希望他們處於一個法律上不確定的狀態。

英國次世代5G策略

英國文化、媒體暨體育部2017年3月8日發布「次世代行動技術:英國的5G策略」,此舉將會加速英國網路基礎建設更新並促進智慧聯網之發展。這份策略書提出了幾個重要方面來採取行動: 建構經濟實例:英國政府計畫建立新的5G試驗場,和企業共同合作發展5G科技。此試驗場預計同時在城市和偏遠地區進行,以了解不同地區環境下建設的效益,且與Ofcom合作了解目前環境與法規障礙。 調適法規:政府會持續檢查相關法規是否需要修正,並與試驗場合作了解現行法規是否適當。 地方區域的治理與能力建構:意識到地方區域於建構基礎建設的重要性,因此英國政府正在諮詢地方政府如何在地方區域進行5G建設,將會將地方政府、政府部門、土地擁有者和企業等集合組成工作小組進行5G策略的諮詢。 覆蓋率與能力匯流:政府將於2017年底前了解人類生活、工作與旅遊需達成之高品質覆蓋率要素,並於2025年前達成這些要素目標。 確保安全的5G布建:5G試驗場將會與重要安全組織如國家網路安全中心合作,以支持和發展新的安全建築來達到消費者對於5G的期待與需求。 頻譜:政府將要求Ofcom檢視現行頻譜授權策略並於2017年底提出報告,以促進4G至5G轉型。 科技與標準:政府將會持續和標準機關合作,監督市場安全與供應者的發展。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

『採購單位執行下單評估與廠商智慧財產管理要件之關連性』研究調查

TOP