日本研創「指靜脈」之個人生物身分辨識技術

  日本日立公司歷經多年研發「指靜脈認證」技術,這個研創的掃描器「靜紋J200」,可掃描判讀個人右手中指的靜脈紋路。依據該技術研創召集人中村道治博士的說法,每個人手指血管紋路是獨一無二,可作為個人生物身分辨識,希望能夠藉此安全防偽技術,杜絕盜領等事件發生。


  日本長崎的「十八銀行」率先在提款機試用「靜紋
J200」中指靜脈認證技術,該辨識裝置乃是以紅外線掃描取得中指血管影像,和金融卡資料及銀行生物身分資料庫比對。而為防止歹徒截斷受害人手指企圖通過辨識盜用身分提款,日立公司特別加上額外的防偽技術,只有血管內有溫暖血液流動的手指才能通過認證,斷指無法過關。

相關連結
※ 日本研創「指靜脈」之個人生物身分辨識技術, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=419&no=64&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
新加坡國家研究基金會推出AI.SG計畫,促進人工智慧技術發展

  新加坡國家研究基金會(National Research Foundation,以下簡稱NRF)於2017年5月3日宣布AI.SG倡議,並將啟動國家級AI計畫。NRF將於五年內投資新加坡幣1.5億元,整合NRF,智慧國家與數位政府辦公室(Smart Nation and Digital Government),經濟發展委會(Economic Development Board),資通訊媒體發展局(Infocomm Media Development Authority),新加坡創新機構(SGInnovate)及整合健康資訊系統(Integrated Health Information Systems)等數個政府部門,以及位於新加坡的研究機構、AI新創公司與發展AI產品的企業等共同投入。計畫三大目標如下: 利用人工智慧來解決影響社會和產業的重大挑戰   這些應用包括利用人工智慧解決交通尖峰時段壅塞問題,或應付人口老齡化帶來的醫療保健挑戰。IHiS執行長兼衛生部資訊長Mr.Bruce Liang表示:「醫療照護是需要高度知識及人性化的行業。多年來從新加坡在醫療照護數位化的發展中,可預見AI未來對於提升新加坡人民健康有很大幫助。例如在疾病預防、診斷、治療計畫、藥物治療、精準醫療、藥品開發等方面皆可發揮作用。醫護人員再加上AI工具,可以更完善解決未來對於醫療照護需求的增加。」 投入並深化技術能力,以掌握下一波科技創新   其中包括可展現更多人類學習能力的下一代「可解釋的人工智慧」 (Explainable Artificial Intelligence,XAI),以及相關技術,例如電腦系統架構(軟體、韌體、硬體整合)和認知科學(Cognitive Science)。NRF獎助金和研究計畫將會支持相關科學活動。當地人才也將透過參與AI深度功能的開發進行培訓。 擴大產業對於AI和機器學習的使用   AI.SG將與公司合作,利用AI來提高生產力,創造新產品,並輔導相關解決方案從實驗室進入市場。目標將支持100個AI研發項目和概念驗證,以利用戶能快速解決實際問題。並預計針對金融,醫療照護和城市管理解決方案領域具有特殊的潛力者先著手進行。   AI.SG計畫此項推動工作,未來不僅將可激發新加坡的研究人員和用戶利用AI解決社會重大問題,也將影響全世界渴望利用人工智慧技術帶來更便利的生活,值得我國相關機關推動政策之參考依據。

汽車經銷公司營業秘密案顯示,僅資安手段不足以構成營業秘密的保密措施

本文參照2025年3月21日紐約東區地方法院的Superb Motors Inc. v. Deo一案,提醒企業:在數位化與資料外洩風險日增的時代,即使資訊具有高度價值,若僅採取防火牆(Firewall)、帳號密碼之技術手段,而未採取具體之書面規範或契約之營業秘密保密措施者,法院仍可能認定不足以符合營業秘密之合理保密措施要件。 本案源於2023年8月16日,Superb汽車經銷公司控訴前股東Deo離開公司後,擅自使用其客戶名單與核心系統Dealer Management System(下稱DMS),協助競爭對手拓展業務、挖角員工,並導致前公司客戶流失。Superb公司主張,公司投入逾12萬美元整合DMS系統,且以150萬美元的廣告與行銷策略蒐集並以多年經驗建構完整的客戶資料庫,屬於具競爭優勢的關鍵資產。 法院認為,Superb公司僅以防火牆、帳號密碼限制資訊存取,期待員工自發性保密,而未提供任何形式的保密協議或明確政策文件,此舉不足以構成合理保密之手段。法院認為,營業秘密保護法所要求的保密措施,需具備可執行的契約條款,例如:保密協議或公司內部保密政策規範。 為助於訴訟舉證、減少因人力流動可能發生的資料外洩風險,企業不能僅依賴科技工具,而應積極主動地搭配企業政策與契約等法律文件。參考美國實務,建議企業採取下列營業秘密管理作法: 1.與有權接觸敏感資訊之員工、顧問簽訂保密協議,且企業應定期檢視與修訂保密條款,以確保條款符合最新的勞動法相關要求並具備可執行性。 2.建立公司內部保密制度與定期教育訓練,以確保員工理解公司要求之保密義務。 本案顯示出法院對「營業秘密合理保密措施」認定的標準,不僅留意保密技術複雜性,更著重於企業採取的保密措施(如保密契約)是否具有法律上的拘束力。 資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」已涵蓋前述美國實務建議之管理作法,我國企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國上訴法院營業秘密判決關於軟體功能之合理保密措施認定

  2022年3月9日美國聯邦第二巡迴上訴法院(下稱上訴法院)於Turret Labs USA, Inc. (下稱Turret) v. CargoSprint, LLC(下稱CargoSprint)案,維持紐約東區聯邦地區(下稱原審法院)的結論,駁回Turret的請求。依照上訴法院判決的結論,確認在原告主張軟體功能被盜用時,必須證明其與軟體供應商及使用者均簽訂保密協議,始符合保護營業秘密法(Defend Trade Secrets Act,DTSA)所定之營業秘密。   2021年2月Turret指控CargoSprint及其CEO,以詐欺的方式,進入其授權Lufthansa Cargo Americas(下稱Lufthansa)使用的Dock EnRoll軟體,並對於軟體的技術資訊及演算法,進行逆向工程,盜用其營業秘密。CargoSprint則抗辯Turret所主張者,不成立營業秘密。   對於軟體功能的合理保密措施認定標準,不論是原審法院及上訴法院均指出,應在於「誰被允許接觸」及「保密協議」。首先,對於「誰被允許接觸」之認定,原審法院指出Turret完全把軟體控制權委由Lufthansa,而Lufthansa使其顧客了解Dock EnRoll軟體功能。上訴法院則指出雖然Lufthansa已限制僅得貨運代理相關的使用者,能夠接觸軟體,但Turret並不能證明其與Lufthansa達成協議,由Lufthansa作出前述的軟體使用者限制。其次,對於「保密協議」之認定,不論原審法院及上訴法院均指出Turret未能證明其與Lufthansa及其他軟體使用者已簽訂保密協議。綜上所述,兩審級法院均認為Turret未採取合理保密措施。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP