運輸公司Uber在其行動應用程式(app)中使用的移動定位技術被控侵權。原告Fall Line專利有限公司於今(2017)年7月10日美國東德州聯邦地方法院泰勒分院向Uber提起專利侵權訴訟。系爭美國專利號9,454,748(以下簡稱’748專利)的權利範圍涵蓋一種收集特定定位資料及相容於各種裝置的軟體,從而不需要再為了各種裝置重新設計新軟體。 Fall Line專利有限公司在訴狀中聲稱:「Fall Line專利有限公司是’748專利的專利權人,擁有所有實體權利。實體權利包括獨佔權及排他權,故Fall Line專利有限公司得以’748專利主張權利、對抗侵權者,對Uber的侵權行為提起訴訟。」Fall Line專利有限公司控訴Uber的行動應用程式可協助使用者以智慧型手機叫車,前往他們所在位置,侵害其’748專利。Uber的侵權行為已經造成Fall Line專利有限公司的損害,應對Fall Line專利有限公司給予適當補償,且補償金額不得低於合理權利金,及法院判決確定的利息及費用,另亦請求禁制令及陪審團審理。 此外,根據一項美國地方法院資料庫的檢索結果顯示,Fall Line專利有限公司今年到目前為止已經提起五件專利侵權訴訟,其中包括對精品國際酒店集團(Choice International Hotel)的控訴,而本案已是Uber今年第三起被控專利侵權的案件。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
為減少排放二氧化碳 瑞士將課徵取暖用油稅為達到二○一○年二氧化碳排放量比一九九○年降低百分之十的目標,瑞士政府已決定明年開徵取暖用油稅,及提高汽油與柴油進口稅。瑞士環境部長勒恩伯格警告,假如溫室氣體排放程度不能降低,可能會課徵更多的燃料捐。 瑞士的「二氧化碳法(CO2 LAW)」奠定了永續能源政策及氣候變遷政策,規定到二○一○年,石化燃料排放的二氧化碳必須比一九九○年水準低百分之十,超過京都議定書的百分之八。瑞士當局已決定,二○○六年起,每公升取暖用油將課徵稅收九分瑞士法郎,汽油與柴油進口稅每公升增加一點六分。 在去年十月,瑞士政府提出四種不同課稅建議,經過諮商,多數贊同取暖用油稅,因為百分之六十的二氧化碳排放來自取暖用油。勒恩伯格表示,這項稅收是公平的,已採取減少二氧化碳排放措施的個人與公司受到的影響較小,「污染者付稅」將可鼓勵採取有利於環境的措施。 瑞士政府並認為,其他溫室氣體排放也會因此降低,健康衛生的開支也因此下降。
日本國土交通省公布「無人機載運貨物指引2.0」,加快物流無人機應用日本國土交通省(国土交通省)於2021年6月25日公布「無人機載運貨物指引2.0」(ドローンを活用した荷物等配送に関するガイドラインVer.2.0)。2021年3月公布之「無人機載運貨物指引1.0(法令編)」(ドローンを活用した荷物等配送に関するガイドラインVer.1.0(法令編))係針對涉及之相關法令進行彙整,而本次則聚焦於應用方面進行詳細說明。 本指引首先於第一編指出,在引進物流無人機前,業者應先盤點該地區存在的課題,並確認無人機是否能有效解決該問題,接著嘗試提出具體解決方案,如拉長無人機飛行距離、增加使用次數,或建立可多次往返的飛行航道以增加使用頻率等。在初步確立無人機業務藍圖後,業者尚須設定物流無人機服務之目標受眾,並聯繫可提供貨物之商店及無人機業者,著手建立相關服務之運作模式。此外,為順利推動物流無人機服務,還需提高民眾對物流無人機之社會接受度,以獲得當地居民的理解及支持。最後,為確保飛航安全,業者除遵守本指引第二編所列相關法令飛行外,亦應制定安全飛行操作手冊,審慎評估起降地點之安全性,並建立一套安全管理系統。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。