歐盟執委會(European Commission)日前再次呼籲歐盟各國加強處理公眾線上隱私威脅的問題。歐盟執委會所公佈的一項報告指出,雖然近年來歐盟各國皆有相關措施,例如課予垃圾郵件發布者罰款、有期徒刑等,但各國法令仍有相當大的差異。這項報告也認為,各國相關法律在歐盟電信法的改革之下,應更為明確且一致,並加強跨國合作。 歐盟執委會電信委員Viviane Reding表示,雖然歐洲的反垃圾郵件相關立法已有七年,但大部分的歐盟民眾仍受垃圾郵件影響。根據該報告,歐盟從2002年即已立法禁止發佈垃圾郵件及使用偵察軟體,但目前仍有約65%的民眾飽受垃圾郵件騷擾。 歐盟執委會的報告指出 : 目前幾乎所有會員國皆已設有相關網站,方便民眾取得垃圾郵件及偵查軟體的資訊或申訴。 在分析來自22國的140個案例後,發現各國所課予的罰款落差懸殊。罰款最高的依序為荷蘭(100萬歐元)、義大利(57萬歐元)及西班牙(3萬歐元 );但在羅馬尼亞、愛爾蘭及拉脫維亞等國,罰款的範圍則多在數百至數千歐元之間。 各級政府機關(電信主管機關、資料及消費者保護機關與執法機關等)責任劃分應更為明確,並有相互合作的機制。 垃圾郵件為全球問題,除了在歐洲境內的各國合作外,與世界各國的合作亦為重要。根據調查數據,平均每六封垃圾郵件中,就有一封是由美國境內所發出,因此目前歐盟執委會正與美國協商,討論雙方執行相關保護法規的跨境合作問題。 歐盟各國應分配足夠的資源予國內機關,以利蒐集證據、進行調查及起訴。 由歐盟執委會提出的歐盟電信法改革中,新增一條規定,要求違反各國國內線上隱私法的罰責必須為有效、實際且符合比例。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
數位模擬分身(Digital Twin)數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。
電信業者提供視訊服務之外國法制研析