吃的安心 基改農產品安全性測試系統上路

  自從1994年第一種基因改造(Genetically Modified , GM)農產品~番茄在美國上市後,越來越多的GM農產品進入了我們的生活,使得大家越來越注重食用的安全性。行政院農業委員會農業藥物毒物試驗所開發的基因改造農產品安全測試系統於11月正式上路,日後台灣自行研發的GM農產品上市前,可以送到藥毒所檢驗,以確定對人體無害。


  國際間對於GM農產品安全性爭議主要有兩個層面:生物安全性(作為食品之安全性)與生態環境安全(對環境的衝擊評估)。整體而言,GM農產品的食用安全評估以過敏性測試最為重要,也就是針對轉殖的DNA基因,測試其外源表現物質(蛋白質)對人體的影響,換句話說:蛋白質是較容易讓人體產生過敏的來源。


  藥毒所開發的過敏反應和安全性測試系統,其針對
GM農產品的評估方法有三:序列比對(和已知過敏原比對)、消化穩定性(採用人工胃液和腸液分解測試)、動物實驗模式(讓大白鼠直接食用)。相信這套安全測試系統的上路,可讓民眾食用台灣自行研發的GM農產品較為安心。

相關連結
※ 吃的安心 基改農產品安全性測試系統上路, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=423&no=0&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
日本公布「如何計算森林吸收的二氧化碳量」

  因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法   每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法   因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法   因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數   此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。

從歐盟、新加坡固網法規檢視台灣高速寬頻環境發展困境

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

BS 10012:2017個人資訊管理系統新版標準已發布

  BS 10012:2009個人資訊管理系統近期轉版,英國標準協會已於2017年3月31日發布BS 10012:2017新版標準,此次修改主要係為遵循歐盟一般資料保護規則GDPR (General Data Protection Regulation )之規定。為了讓企業組織能更有效率整合內部已導入之多項標準,新標準採用ISO/IEC附錄SL之高階架構(High Level Structure),該架構為通用於各管理系統的規範框架。   2017新版架構由原本的6章變為為10章,新架構如下: 第1章 範圍 第2章 引用規範 第3章 專有名詞與定義 第4章 組織背景 第5章 領導統御 第6章 規劃 第7章 支援 第8章 營運 第9章 績效指標 第10章 改善   新標準主要修改內容如下: 個資盤點單需增加「法規」盤點項目,且應載明個資流向(軌跡紀錄)。 風險管理架構參酌ISO 31000:2009修改。 組織增設資料保護官(Data Protection Officer, DPO)。 個資蒐集、處理及利用: (1)蒐集前須先告知當事人並取得其同意。 (2)蒐集應有必要性且最小化。 (3)兒童個資蒐集、利用須先經監護人同意。 (4)若個資利用目的為開放資料(Open data)須作去識別化。 個資必須維持正確且最新。 個資保存不超過處理目的存在必要之期限(保存期限)。 增加個資完整性與機密性要求。 預先諮詢與授權,例如:網頁有使用cookies需明確告知瀏覽者。 個資管理目標與量測,包括欲導入範圍、現況評估等有效性目標。 增添文件管理規範。   BS 10012:2009版本將於2018年5月25日廢止,公司驗證轉版的過渡期為24個月,因此2019年3月未轉版者證書失效。

TOP