歐盟訂定新規範 管理傳統草藥品上市

  近年來,歐洲市場對傳統草藥的接受程度逐漸上升。傳統草藥銷售市場在歐盟成員國正在快速成長,其中從中國進口的傳統中藥數量更以倍數上升。目前歐洲市場上的天然植物藥約略可分為三大類:第一類是處方藥,用於治療危重病症的植物藥針劑也包括在內;第二類是非處方植物藥;第三類是保健製藥,可在保健食品店購買。歐盟去年通過的傳統草藥品指令(EU Directive on Traditional Herbal Medicinal Products)自20051031日起,已全面生效適用於歐盟地區。該指令為傳統植物來源藥品於歐盟境市場內銷售,開啟了依照簡化查驗程序上市的途徑,但也限制了部分草藥品的上市可能。


  其中較具衝擊性的是:傳統使用要件之認定嚴格。根據指令第
16c1)條,此一傳統使用歷史必須是30年以上,且其中至少有15年是在歐盟境內的使用歷史,方可考慮其安全性及療效。「傳統使用」仍須有相關文獻及專家證明其:(1)已使用相當年限之客觀事實、(2)具有安全性與療效之可信度,因此,簡化程序並無法適用於偏方之傳統草藥。而「必須是在歐盟境內至少有15年的使用歷史紀錄或資料」,更大大限制了在1990年前尚未進入歐盟會員國的草藥品,將可能因此被擠出歐盟市場。


  該指令規定了七年的緩衝限期,可讓歐盟會員國調整不符合簡化查驗程序申請資格、但在該指令生效前已在各會員國市面上銷售的草藥品。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟訂定新規範 管理傳統草藥品上市, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=425&no=0&tp=1 (最後瀏覽日:2025/11/26)
引註此篇文章
你可能還會想看
德國資料倫理委員會針對未來數位化政策之資料運用發布建議報告

  德國資料倫理委員會(Datenethikkommission, DEK)於2019年10月針對未來數位化政策中的重點議題發布最終建議報告;包括演算法產生預測與決策的過程、人工智慧和資料運用等。德國資料倫理委員會是聯邦政府於2018年7月設置,由多位學者專家組成。委員會被設定的任務係在一年之內,制定一套資料倫理標準和指導方針,作為保護個人、維持社會共存(social coexistence)與捍衛資訊時代繁榮的建議。   最終建議報告內提出了幾項資料運用的指導原則,包含: 以人為本、以價值為導向的技術設計 在數位世界中加強數位技能和批判性思考 強化對個人人身自由、自決權和完整性的保護 促進負責與善意的資料使用 實施依風險調整的監管措施,並有效控制演算法系統 維護並促進民主與社會凝聚力 使數位化戰略與永續發展目標保持一致 加強德國和歐洲的數位主權

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

基因資訊醫療運用與業務過失

歐盟計畫降低學名藥壁壘 開罰Teva和Cephalon 6050萬歐元

  歐盟執行委員會(以下簡稱執委會)於2020年11月以延遲平價學名藥進入市場、違反歐盟反托拉斯法為由,裁罰以色列學名藥廠Teva和美國生物製藥公司Cephalon共6050萬歐元。   Cephalon販售的Modafinil是用於治療猝睡症的藥物,為長年佔Cephalon全球營業額40%以上的暢銷產品。儘管其主要專利已於2005年在歐洲到期,但Cephalon仍保有部分Modafinil的延續性專利(secondary patents)。原先欲以Modafinil學名藥進軍市場的Teva也有Modafinil的相關專利,然而Cephalon和Teva達成「延遲給付」(pay-for-delay)協議,Teva同意暫緩進入市場且不去挑戰Cephalon的專利。執委會經調查發現,該協議排除Teva成為Cephalon的市場競爭者,使Cephalon的專利即使到期多年產品仍可維持高價位。   延遲給付協議在專利和解上通常是合法行為,但執委會認為此舉使患者和健保體系無法即早受惠於市場競爭帶來的低價,協議廠商卻享有缺乏競爭所產生的額外利潤。歐盟日前發布的《歐洲藥品戰略》(Pharmaceutical Strategy for Europe)更強調藥品應是全民可負擔、可取得及安全的,而維持自由競爭對達成此目標至關重大。執委會認為延遲給付協議違反《歐盟運作條約》(Treaty on the. Functioning of the European Union, TFEU)第101條,以協議限制或扭曲歐盟內部市場競爭,故裁處高額罰款。2022年歐盟將採取措施降低學名藥進入市場的阻礙,考慮進行審查、要求廠商使其專利藥品在全歐盟境內都可被取得,否則將縮短其智財權的保護期間。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

TOP