生技產業的新活水 動植物得以申請專利

  行政院「生物技術產業指導小組委員會議」於去(2005)年12月通過經濟部智慧財產局提出的專利法修正案,將開放動植物得以申請專利。這項決議將在近期送交行政院院會,希望今年上半年能通過並順利送請立法院審議。


  全球的動植物專利保護現況大致可分為三類,
(1)完全開放動植物專利,例如美國、日本、新加坡等國家;(2)有限度開放動植物專利,但不包括之後經過育種選拔程序達到商業化標準的品種,如英國、德國、荷蘭、法國等歐盟國家。(3)只開放動植物改良方法專利保護,例如我國。


  農委會和智慧財產局自去(
2005)年起針對動植物專利議題進行多次協商,終於在去(2005)年6月達成共識:「為保障研發成果及促進產業升級,我國動、植物宜朝開放專利保護方向規劃」。為此,智慧財產局已決定刪除專利法第24條第一項「動植物新品種將不予發明專利」條文,開放人為技術產生的動植物「產品」及「方法」能申請專利。


  台灣農業科技的發展表現向來是非常優越,近年來更是突飛猛進,不論是醫學、糧食、環境保護等均可運用生物科技的研發成果。是以,此項新的開放措施可視為政府推動生技產業的重大進展,而對生技業者來說無疑是注入新的活水。

相關連結
※ 生技產業的新活水 動植物得以申請專利, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=435&no=0&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
歐洲食品安全局頒佈利益申報實施細則

  為了有效管理歐洲食品安全局(European Food Safety Authority, EFSA)內部各項活動間之利益管控與監督,EFSA日前於3月5日公布利益申報(Declarations of Interest, DOIs)施行規則(Implementing Rules),並計畫於2012年7月1日正式實施,且同時搭配一個為期4個月的過渡(Transition Period)配套措施方案。該利益申報施行規則,乃為EFSA於今年初所核准之「獨立性與科學決策過程」(Independence and Scientific Decision-Making Processes)政策的基礎規範項目之一。   本次EFSA所頒布之利益申報施行規則,其訂定之理由係因,原任職於EFSA旗下基因工程植物之首席風險評估專家,轉任至一家專門研發及生產該種植物之生物科技公司;為避免並且釐清相關因該事件所衍生之利益衝突問題,乃制定本規範。故此,為具體有效管理EFSA內部人員與其他涉及EFSA各項活動之機構間的利益監督事宜,EFSA遂進一步於今年初開始著手進行相關措施之規劃。目前該利益申報施行規則除了主要針對EFSA旗下之各層級人員訂定各項利益類型之規範準則外,更重要的是,其亦提供其旗下之專業科學研究人員,各項能有效具體確認其利益界線之劃分的保護措施。由於該利益申報施行規則授與EFSA選取與管理利益申報議題若干彈性,因此EFSA能具體且有效的利用相關規範延攬頂尖研究人員,進而協助EFSA提升其內部研發人員之創新研發能力。   政府機關成員之利益申報與迴避問題,乃為全球各國政府需面對之問題,而對於如何有效且彈性的進行相關議題之管控,更是相關政策制訂時需加以考量之點。EFSA之利益申報施行規則不僅有效管理內部人員之利益衝突與申報問題,同時亦藉由彈性的管理規範方式,延攬優秀頂尖人才,達到具體提升研發水準之功效;對此,EFSA之規範方式與運作成效,實值得加以觀察與效仿。

電力市場2.0--2015德國電力市場改革最新發展

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

由Meta案看數位資料商業化面臨之跨國問題

於2023年5月22日愛爾蘭資料保護委員會(Ireland's Data Protection Commission, DPC)對於Facebook的母公司Meta將歐盟境內資料傳輸到美國的行為做出開罰12億歐元的決定,並暫停資料跨境傳輸行為,再次引起了各界對於資料跨境傳輸的關注。 針對跨國提供網路服務的企業,如何確保企業處理資料的方式可以符合多國的法規要求,向來是一困難的問題。自從2015年「安全港隱私準則」(Safe Harbour Privacy Principles)被歐盟法院宣告失效後,美國與歐盟試圖就資料跨境傳輸重新達成一個可符合雙方要求的框架,包含2020年被歐盟法院宣告無效的「隱私盾框架」(EU-US Privacy Shield Framework),而2022年3月雙方達成原則性同意的歐盟美國資料隱私框架(EU-U.S. Data Privacy Framework, DPF),惟就美國於同年10月發布用以實施之行政命令(EO 14086),亦於2023年5月被歐洲議會認為對於歐盟境內資料的保護不足。 2023年6月8日英國跟美國共同發布建立英美資料橋(UK-US data bridge)的聯合聲明,以建立起英美之間的資料流動機制,但該英美資料橋是基於歐盟美國資料隱私框架做進一步的擴展,能否符合歐盟對於資料保護的要求,目前尚無法預期。 目前的商業模式中資料跨境傳輸是難以避免的現實困境,各國亦就資料跨境傳輸建立框架,企業需持續關注自身營業所在地之法規變化,以即時因應調整自身管理機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)

TOP