美國FDA官員新近對外表示,該局正考慮參考處方藥使用者付費法(Prescription Drug User Fee Act, PDUFA),研擬一套向學名藥產業收費的機制。PDUFA是美國國會在1992年所通過的法案,依據該法,生技及製藥產業向FDA支付「使用費」(user fees),FDA承諾每年達到一定的審查“業績”(performance standards),以加速新藥上市申請。
目前PDUFA的適用對象並不包括學名藥廠,鑑於歷年來學名藥上市申請案件大幅攀升,以FDA既有之人力與資源,早已無法負擔如此大量的上市審查工作。另若考量諸多知名原廠藥之專利將在未來幾年陸續到期,如不增加新的資源,FDA的學名藥審查負擔將會持續惡化。使用者付費機制若能擴及學名藥,則FDA將可獲得額外資源,用來聘用更多的專業審查人員、取得更為豐富之資料,以保障病患之權益,使其可儘速近用便宜且有效之學名藥。
雖然PDUFA在改善新藥上市審查效率方面,確實達到了政府與產業界雙贏、民眾受惠的目的,不過這套制度要擴及學名藥產業,卻遭受到學名藥業界的反對。其中最主要的疑慮來自於,在現今的審查制度設計下,提高學名藥上市審查效率的目標是否能透過使用者付費達成,殊值懷疑。蓋根據美國法律規定,學名藥廠若以原開發藥廠之專利無效為理由申請上市,應將申請上市之事實通知原開發藥廠,一旦原開發藥廠認為學名藥廠侵害其專利並提起訴訟,FDA即必須停止學名藥之上市審查。據此,學名藥業界認為,在上述問題解決前,即使PDUFA擴及適用到學名藥產業,也並未能有助於改善學名藥上市審查之效率。
總而言之,PDUFA若欲擴及學名藥產業,仍需釐清前揭疑慮並有待國會立法通過,不過,一旦使用者付費機制擴及適用於學名藥產業,則學名藥廠之藥物開發成本將會提高,我國學名藥廠如欲經營美國市場,值得注意其發展。
加拿大的身份盜用問題嚴重,根據Canadian Council of Better Business Bureaus估計,每年因身份盜用所造成的經濟整體損失超過二十億加幣。此外,去年十一月Ipsos-Reid的調查顯示,73%的加拿大人擔心身份盜用問題,且28%的加拿大人曾親身遭遇、或是有周遭認識之人因此受害。 然而,與身份盜用猖獗的現況相較,加拿大個人資料和隱私保護法制一直飽受批評,被認為無法遏止此一問題擴散。加拿大資料安全之基礎規範為「個人資訊保護與電子文件法」(Personal Information Protection and Electronic Documents Act),但以具有重要嚇阻效果的刑法而言,卻只處罰濫用他人身份資訊,如身份詐欺、冒用、偽造等行為,但對於初步蒐集、處理和盜賣身份資訊之行為,卻難以透過現行刑法規範。 身份盜用可能造成的影響層面相當廣泛,例如個人的財務和信用損失、商業或財金產業的損失,甚至是整體納稅人的傷害。 職是之故,加拿大勞工部、魁北克經濟發展部等政府首長乃宣布,聯邦政府有意推動刑法之修改,使檢警對於先期身份盜用(或違法資料蒐集)之行為,有更大的調查和追訴空間,並希望此一政策方向能獲得國會的後續支持。
中國衛生部發布「抗菌藥物臨床應用管理辦法」長久以來,中國民眾對於抗菌藥物(如抗生素等)存有高度的依賴性,造就了國內規模龐大的抗菌藥物市場,依據中國衛生部統計,中國民眾對抗菌藥物的人均消費額幾乎是美國民眾的10倍。對此,世界衛生組織早於2011年4月7日便正式提出警告與呼籲,若中國未能控制抗菌藥物濫用的情況,很快將面臨「無藥可用」的窘境,並演變為全球人類的災難。 為扭轉前述抗菌藥物濫用狀況,中國衛生部於2012年4月24日正式發布了「抗菌藥物臨床應用管理辦法」(以下稱管理辦法),分別對於抗菌藥物的使用及醫療院所之管理制度作了如下的完整規範: 1. 對抗菌藥物採分級管理制,分為「非限制使用級」、「限制使用級」及「特殊使用級」三類,並要求醫療院所依此分類,擬定「抗菌藥物供應目錄」,凡具有同一通用名稱者,其注射型和口服型各不得超過兩種、具有相似或相同藥理學特徵的藥物亦不得重複列入。 2. 依上述分級對抗菌藥物作臨床使用管理:「限制使用級」者,只有當發生嚴重感染、免疫功能下降合併感染,或病菌只對限制級藥物有反應時,才允許使用;「特殊使用級」者,非經醫療院所內設置的「抗菌藥物管理工作機構」同意,不得使用;惟若係為搶救生命垂危的病患或其他緊急情況下,可以越級使用,但須於24小時內補行程序。 3. 各院所必須設置「抗菌藥物管理工作機構」或專責人員,負責制定抗菌藥物管理制度、擬定「抗菌藥物供應目錄」,並建立細菌抗藥預警制度。 管理辦法將於2012年8月起正式施行,一般預料將有助於改善中國抗菌藥物濫用的現象,然用藥限制也必定衝擊現今許多對抗菌藥物產品銷售已存有高度依賴性的企業;相反地,由於管理辦法中明文將「具有抗菌作用的中醫製劑」排除於管制範圍外,或許將促成抗菌中醫藥品的發展契機,而值得持續觀察之。
競業禁止新方向-「勞資雙方簽訂離職後競業禁止條款參考原則」 美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。