台美貿易談判 藥廠權益是焦點

  據報載, 5 25 起在我國舉行兩天之台灣與美國貿易投資架構協定( TIFA )會談,藥廠權益乃雙方談判焦點,美方這次來台所提出之談判項目中,對台灣藥廠衝擊較大的是資料專屬權( Data Exclusivity ),及專利連結( Pattern Linkage )兩項,本土製藥業擔心,政府若妥協將可能造成台灣藥廠及研究單位新台幣上百億元的損失。


  儘管去年初立法院已經三讀通過藥事法 40 條之 2 的「資料專屬權保護」條文,但預料美方這次將要求政府重新修法,以保障外商藥廠的權益。此外,專利連結( patent linkage )也是衛生署嚴陣以待的項目,外商訴求此一機制之目的,係希望透過專利資訊之揭露,使任何申請上市許可之學名藥品,均係在專利到期後或未侵害專利之前提下,使得上市。


  專利連結制度首見於美國,美國食品藥物管理局 (FDA) 對藥品有所謂之「橘皮書」,要求公布各藥品的專利內容及安全性與療效資訊,並以此作為日後學名藥賞上市或與原開發藥廠發生專利侵權爭訟時之參考。業界認為,如果台灣也比照美國 FDA 專利連結的規定,可能導致外商藥廠得以輕易對台灣藥廠展開侵權訴訟官司,衝擊我國製藥產業。

相關連結
※ 台美貿易談判 藥廠權益是焦點, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=441&no=64&tp=1 (最後瀏覽日:2025/04/03)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

日本印章制度與電子署名法修正

  日本國會於2021年2月9日正式提出「數位社會形成基本法草案」(デジタル社会形成基本法案),立法目的為提升國家競爭力、國民生活便利性,以建置一個「數位社會」,基本原則為降低數位落差,而降低數位落差之重要手段即包括日本印章制度之改革。   日本政府對印章制度之改革,可分為「取消蓋章制度」及「增加電子簽章使用率」二條路線。由於新冠疫情(COVID-19)影響全球工作型態,日本政府為推動電子化服務,考慮取消印章使用,因為其徒增商業活動成本,亦可能提升染疫風險。日本行政改革大臣河野太郎在2020年11月13日內閣會議後之記者會上即表示,約1萬5000種需要使用印章的行政服務中,絕大多數將取消蓋章制度。「數位社會形成基本法草案」亦預告將修改48部要求使用印章之法律,本草案及相關修法將於2021年9月正式通過施行。   電子簽章使用方面,日本在野黨聯盟於2020年6月提出「電子署名及認證業務法一部修正草案」(電子署名及び認証業務に関する法律の一部を改正する法律案)。依照現行規定,電子簽章須本人以一定方式簽署始可推定為真正,推定真正之條件過度嚴苛,便利性未優於實體蓋章,致使電子簽章使用普及度低落。本草案則降低推定門檻,僅須以特定電子方式簽署即有推定真正效力,使電子簽章簽署人身分驗證更為容易。目前法案仍在眾議院提案階段,尚未經國會表決通過,後續發展值得關注。

日本與歐盟間個人資料之國際傳輸

  歐盟委員會(European Commission)原則上禁止將歐盟境內的個人資料傳輸至境外,只有經歐盟委員會認定其個人資料保護機制達到歐盟認可標準的國家或地區例外,例如:瑞士、加拿大、以色列等。而日本未能進入前揭國家之列的主要原因,係日本之個人資料保護法未將政府部門納入規範對象。但是基於經濟全球化的需求,日本與歐盟自2017年第一季開始加速進行雙邊合意協商。   日本個人資料保護委員會公布,於2017年5月修正施行的個人資料保護法,已符合歐盟資料保護規則中准許進行境外傳輸的標準。其中包括以獨立的個人資料保護機關來確保必要的保全機制能確實執行等五點(新設立個人資料保護委員會、個人資料定義的明確化、個人料去識別化、非法販賣個人資料之處罰、其他)。    歐盟對此表示,雙邊對於個人資料保護之標準的差異性已經漸漸縮小,利於日本與歐盟間個人資料國際傳輸的環境也已經逐漸形成。目前於歐盟境內設立子公司或是設立法人的日本企業,預期2018年即能自由就歐盟境內雇員或顧客的個人資料,進行日本與歐盟間的國際傳輸。    由於歐盟關於個人資料之保護,為歐洲聯盟基本權利憲章(Charter of Fundamental Rights of the European Union)所明定,企業若非法進行個人資料境外傳輸,會被處以高額罰金,金額約相當於該企業一年內全球營業額總額的4%或2000萬歐元,兩者取其高者為上限;股東甚至也可能面臨被提起訴訟的風險。日本此次修法,對日本在歐盟境內的企業經營將帶來莫大的裨益。

歐盟立法成員對整體生質燃料目標仍存有不同意見

  為確認是否採行歐盟整體生質燃料目標(即於2020年應達20%)而欲進行協商之前夕,歐洲各政黨團體立法成員們間,對於設定環境永續性基準與將用以種植生產生質燃料作物土地等方面之意見,至今仍分歧不一。   鑑於歐洲環保團體紛盼能儘快看見那些未來將被間接利用來生產生質燃料之土地,其可一併被涵括在正式評估公式之內,來評估對整體CO2濃度影響;因此,各會員國遂轉而朝向歐洲執委會,要求其應提出詳細之規則,並希望能在將相關基準納入整體法律架構之前,完成對間接利用土地所產生衝擊之評估方法與標準的建立。   環保團體代表Turmes指出,日前執委會對歐洲議會所提出之建議提案,已表達其意見並且認為:由於對間接利用以生產生質燃料之土地其未來將對CO2排放產生衝擊方面,尚未獲得足夠之科學性證據來做為日後評估之參考;因此,就整體生質燃油利用之最終版本而言,其認為需將「新方法學」(new methodologies)部分一併納入,以填補前述科學性知識之缺口與不足。   另外,各會員國政府對歐洲議會所提出,要求透過未來利用生質燃料來達到減少碳排放目標時,至少應有40%之比例,需透過運用第二代生質燃料來達成之「附屬目標」(sub-targets),亦表示反對。目前各政府代表僅同意25%,而至於剩下之15%,則將留待後續協商時,再進行討論。   最後,Turmes指出,關於前述次要性目標之確定,歐洲議會將待解決間接利用土地問題後,再做更進一步之協商。

TOP