世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定Uber違反《Data Protection Act 1998》資料保護法英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定知名共享公司Uber未能在網路攻擊期間保護客戶的個人資料,故處以罰款385,000英鎊。 ICO調查發現Uber的諸多過失,包含系統存有一系列原可避免的數據安全漏洞,使得攻擊者可透過Uber美國母公司旗下所營運的雲端儲存系統,下載大約270萬筆英國客戶個人資料,例如全名、電子郵件及電話號碼等。該事件亦影響了Uber在英國8萬多名司機的相關營運紀錄,如旅程詳情及支付金額。然而,受影響的客戶和司機竟達一年多未被告知此個資外洩事故。相反的,Uber反而向攻擊者妥協並支付了10萬美元,以銷毀被盜取的數據。 ICO認為,這不僅為Uber資料安全之問題,且當時未採取任何措施通知可能受影響的人,或對其提供任何協助,已完全忽視受害客戶和司機之權益。而對攻擊者支付贖金後即保持沉默,亦非對於網路攻擊之適當反應,Uber未完善的數據保護措施,以及隨後的決策與行為,反將可能會加劇受害者權益的受損。 因此,ICO認為該事件已嚴重違反了英國1988年資料保護法(Data Protection Act 1998, DPA)第7條的原則,有可能使受影響的客戶和司機面臨更高的詐欺風險,故從嚴判處Uber高達385,000英鎊罰款。
日本先進設備導入計畫獎勵中小企業設備升級日本經濟產業省為協助中小企業更新老舊機器設備,並鼓勵中小企業導入新穎先進設備改善企業生產率,公布「先進設備導入計畫指引」(導入促進指針),於2019年至2021年間授權地方政府訂定先進設備導入計畫(先端設備等導入計画),提出區域內申請計畫的資格、設備定義、計畫目的與財產稅減免額度,以促成地方中小企業對地方特色的貢獻與參與,並改善在地產業環境與結構。 符合資格的中小企業若能在核准計畫年度內,每年勞動生產率提高達3%,可適用財產稅稅率減半或0%之優惠稅率(非免稅)。「先進設備導入計畫指引」亦明確指出,審核通過之計畫仍可進一步適用經濟產業省「中小型製造服務經營支援補助」(ものづくり・商業・サービス経営力向上支援補助金)、「服務業IT應用生產力提升補助」(サービス等生産性向上IT導入支援事業),享有更多的補助金補助。 所稱設備係指任何機械、裝置、備品、建築物附屬設備、軟體,以及電子檢驗或測量儀器。各地方政府訂定計畫時,可依其產業政策進一步限縮範圍。而先進之定義,係指欲購置設備之良率或生產效率,應較所淘汰設備高1%以上。有關新、舊設備之汰換應以同產業、同生產流程者為限,兩者比較之期間為淘汰設備原銷售日期起後10年內。由此可知,先進設備導入計畫的特殊性在於加速中小企業汰舊換新,提高勞動生產率以因應人口高齡化,而與鼓勵企業購買最新、最尖端設備之補助措施有所不同。 此外,為健全地方財政自主,「先進設備導入計畫指引」亦要求各地方政府應說明地方產業、環境或人文特色及先進設備的投資條件,以促進經濟發展與地方產業結構的融合。該指引具體建議包括: 應考量到中小企業導入先進設備提高勞動生產率後,影響當地就業人口需求,以及如何避免企業裁員的機制。 導入之先進設備因運作所產生之噪音、光害、排放污染等環境問題;以及導入之設備是否影響到當地居民生活作息而有侵害公共秩序之虞。 考量到財產稅為地方稅之稅源,應避免過度減免而導致地方財政虧損。
德國2021年再生能源法修正草案最新發展德國的再生能源法(Renewable Act)在經歷過2014年及2016年兩次較大的修正後,今年度九月由部分上議院議員提出修正草案。 德國再生能源法起源於20年前,當時主要重點在於提升離岸發電、太陽光電(Solar PV)及生物氣體、水力資源對於城市用電的供應率。由於現階段德國幾乎半數的城市用電仰賴上開再生能源,因此2021年度的修法上,主要導向了協助再生能源廠得以更完善的準備進入市場,包括與現有的政策發展接軌,例如2020年的國家氫能源政策(hydrogen strategy)及電動車的電價制定等。以下將列舉數項較為重大之項目: 實現2050年碳中立的目標 結合歐盟遠大的氣候目標 擴大再生能源產能 重新制定再生能源徵收稅款 提高公眾對於再生能源的接收度 於德國南方增設更多風力發電的渦輪機及生物燃料 訂定彈性電價 提升太陽能板安裝回饋酬勞 響應氫能源政策,擬使氫能源廠商於使用再生能源時得免付費(但此項提案尚待利害關係人取得共識)。 本次再生能源法的修正提案誠然立意良善,但仍有不少批評者認為,本次修法未將日後使用再生能源的人數可能增加一事納入考量,且未將老舊風機重新供電等事納入法規中。 而根據11月份修法決議結果,德國政府並未採納上開提案,其中主要理由是認為該草案所列之內容無法達成氣候目標(climate targets),並建議該提案應擴張再生能源產能,尤其是離岸風電及太陽能。德國能源部則認為提案中所預估的2030年電力需求過低,無法切實因應未來的需求,是以,未來德國再生能源法之修法方向仍有待持續觀察。