全國能源會議於
工業部門溫室氣體排放量占全國排放總量五五%,但占全國 GDP 比例逐漸減少,工業局計畫在全國能源會議中,提出多項溫室氣體減量措施。
為建立產業減量機制,工業局規劃出短、中、長期三階段減量計畫外,並提出攸關溫室氣體查核機制的能源效率計算模式,藉由會議尋求共識後,逐步落實。
據瞭解,能源效率計算機制因各國規劃採取的措施不同而所有差異,有國家採用每人耗能量為計算基準,也有以生產產品所需耗能量計算,或是每創造單位國內生產毛額所需耗用的能源計算(即能源密集度)。
工業局認為,以能源密集度做為我國工業查核指標,可顯示能源消費與該產業的邊際效應變化趨勢,有助於落實工業部門減量策略的執行,因此建議我國未來在產業溫室氣體排放查核機制上,以能源密集度為查核指標。
至於,在溫室氣體減量機制上,工業局規劃我國自二○○七年時推動既設工廠實施溫室氣體減量措施,並至二○一五年時達到溫室氣體排放密集度降低一○%的目標,而其減量的基準年為二千年;在新設廠方面,則以全球一○%標竿能源效率製程的排放密集度擬訂排放標準加以審議。
本文為「經濟部產業技術司科技專案成果」
美國聯邦交易委員會指控 Sanford Wallace 氏及其所經營的 Smartbot.Net 公司,利用 IE 瀏覽器的安全漏洞散佈間諜軟體一案,日前新罕布夏州聯邦地方法院作成判決。 被告散佈之軟體會將受害者的光碟機托盤彈出,同時在螢幕顯示「最後警告」等字樣,附帶一則訊息告訴受害者,「如果您面臨光碟機托盤彈出的狀況,代表間諜軟體已經入侵您的電腦系統,安全已經出現漏洞,敬請立刻下載本公司出品,以資因應!」趁機推銷該公司出品,定價 30 美元之 Spy Wiper 跟 Spy Deleter 軟體,號稱足以因應間諜軟體相關問題。實際上,被告未經用戶同意逕予散佈植入的,性質上即係間諜軟體,不僅會偷偷更改用戶電腦的設定,持續不斷跳出廣告視窗,造成用戶之電腦運作不順或者當機,還可能洩漏電腦裡頭所儲存的資料。 日前新罕布夏州聯邦地方法院就本件作成判決,命被告必須償還不法取得的利益,共計 408 萬餘美元;不得繼續傳輸散佈間諜軟體至用戶之個人電腦;不得未經同意逕行傳輸任何軟體予用戶;不得將用戶之電腦導向彼等並未打算瀏覽或連結的網站或伺服器;不得更動用戶瀏覽器所預設的首頁;不得更動或調整搜尋引擎的功能或成果。
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
南韓司法單位擬懲處黃禹錫等四人去(2005)年11月,全球幹細胞研究先驅-韓國首爾大學黃禹錫(Hwang Woo-suk)教授承認其研究有國際醫學倫理瑕疵,引發軒然大波。其後,相關的醜聞頻傳,黃教授更被控研究造假,使得原本以前瞻之胚胎幹細胞研究技術(即體細胞核轉置技術”somatic cell nuclear transfer”)獨步全球的韓國科學界,研究信譽遭受嚴重打擊。 偵辦「黃禹錫科研論文造假醜聞案」的南韓檢察當局,經連日傳訊相關人員後,正考慮對黃禹錫等四人採取司法懲處。 對於被查出不法獲得並使用科研用卵子的黃禹錫,檢方考慮依據違反「生命倫理及安全之法律」等條文予以懲處。 據指出,檢方在調查中,掌握了2004年及2005年刊登在「科學」雜誌上的科研論文,黃禹錫等人捏造體細胞複製幹細胞,和為病患複製培育胚胎幹細胞的科研數據,矇騙了整個科學界。調查顯示,黃禹錫去年十一月檢驗幹細胞的遺傳基因(DNA)指紋之前,似乎真的不曉得根本就不存在為病患量身打造複製培育胚胎幹細胞的事實。但檢方卻證實黃禹錫確實指示屬下研究員,將部分照片等科研數據和資料,自我膨脹等造假的事實。 由於生醫研究給許多病患帶來新的治療希望,因此其通常會以實際行動(即自願捐贈研究用檢體、協助經費募集等)表達支持。惟研究瑕疵或造假則會讓病患及一般民眾認為遭受欺騙,進而影響其未來捐贈檢體或以受試者身份參與生醫研究之意願。可見生醫倫理並不僅是道德呼籲,也是生醫研究能否順利進行、生醫研究能否生根發芽的重要基石。 黃禹錫案之相關報導可參見 The Economists, December 3 rd 2005, p. 71; The Economist, December 24 th 2005, p. 109-110
OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。