全國能源會議於
工業部門溫室氣體排放量占全國排放總量五五%,但占全國 GDP 比例逐漸減少,工業局計畫在全國能源會議中,提出多項溫室氣體減量措施。
為建立產業減量機制,工業局規劃出短、中、長期三階段減量計畫外,並提出攸關溫室氣體查核機制的能源效率計算模式,藉由會議尋求共識後,逐步落實。
據瞭解,能源效率計算機制因各國規劃採取的措施不同而所有差異,有國家採用每人耗能量為計算基準,也有以生產產品所需耗能量計算,或是每創造單位國內生產毛額所需耗用的能源計算(即能源密集度)。
工業局認為,以能源密集度做為我國工業查核指標,可顯示能源消費與該產業的邊際效應變化趨勢,有助於落實工業部門減量策略的執行,因此建議我國未來在產業溫室氣體排放查核機制上,以能源密集度為查核指標。
至於,在溫室氣體減量機制上,工業局規劃我國自二○○七年時推動既設工廠實施溫室氣體減量措施,並至二○一五年時達到溫室氣體排放密集度降低一○%的目標,而其減量的基準年為二千年;在新設廠方面,則以全球一○%標竿能源效率製程的排放密集度擬訂排放標準加以審議。
本文為「經濟部產業技術司科技專案成果」
在世界各國,無論是公務機關或非公務機關,均無可避免地大量蒐集個人資料,這些資料包括一般民眾、雇員、顧客或潛在客戶等。對此,加拿大隱私委員會辦公室(Office of the Privacy Commissioner of Canada,簡稱OPC)發布關於「個人資料保存與處理指引文件:原則與良好實作」(Personal Information Retention and Disposal:Principles and Best Practices),以協助聯邦機構與私人機構對組織內部保有之個人資料,做好妥善保存與處理。 OPC建議組織應在內部制定相關管理政策與程序,並於指引文件中提出11項參考要點,其中包括1.是否定期審查蒐集個人資料與保有目的之關連與妥適性?多久審查一次;2.對於保有之個人資料及保存目的是否進行清查與盤點?多久確認一次?3.個人資料儲存的形式與地點為何?是否有備份?4.法律是否有規定最低保存期限?5.組織如何處理個人資料與相關備份檔案?6.對於儲存個人資料之裝置或設備,是否採行適當地安全維護措施?7.個人資料保管與處理相關政策的核決人為誰?8.對於利用資料生命週期追蹤資料,是否存在適當管制程序?9.內部員工是否了解並熟悉組織關於個人資料保存與處理之政策規定?;是否有制定文件銷毀之安全措施?10.資料等候處理期間是否受到安全妥善之保管?11.對於使用資料之第三方,是否有透過合約或其他機制進行有效監督管控措施?是否制定定期查核機制?等,期以協助組織掌握政策與程序制定要領。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。
加拿大運輸部發布2025無人機方案,提出建立無人機交管系統等優先項目加拿大運輸部(Transport Canada)於2021年3月22日發布「2025無人機方案」(Transport Canada’s Drone Strategy to 2025),概述其對無人機的願景及方案,並提出其至2025年前所應優先關注之項目,以確保無人機安全地整合進現代化航空系統並進入空域中。 為因應無人機產業發展帶來新挑戰及機會,加拿大運輸部列出五點事項做為對總體政策及優先事項之考量,包括: (一)透過安全規範支持創新:相關方案包含為偏鄉地區操作較低風險之視距外操作制定規範、為中度風險視距外操作核發飛行操作許可、在實際操作環境中測試技術,以及核准相關試行計畫,以提供中度風險之視距外操作更多的政策規劃資訊。 (二)建立無人機交通管理系統:包括建立無人機飛行計畫、空域使用請求系統、通訊、導航及空域監管系統、自2021年於偏鄉地區進行無人機交通管理實驗、探索「數位牌照」(digital license plate)用於遠端識別無人機的選項,以作為無人機交通管理系統基礎。 (三)無人機的安全風險:與利益相關人合作釐清機場保安的角色與職責、通訊傳輸協定及突發事件回應期間的工作協調、評估機場威脅及漏洞以了解風險、探索反無人機技術、對未經授權無人機的侵入進行偵測及追踪,以及導入驅逐未經授權無人機的安全框架。 (四)創新推動經濟發展:促進短、中期研發計畫、對先進無人機研發活動尋求合作機會、尋求能為加拿大氣候環境與操作提供資料的優先研發項目、制定方案使新型無人機技術更容易被國際市場接受、針對無人機之營運框架及產業目標進行評估、擬定產業合作策略並促進現有航空經濟框架現代化。 (五)建立民眾對無人機的信任:為增進民眾對無人機的認識及接受度,制定行動計畫、與地方政府共同規劃營運、鼓勵更多的社群參與,並與執法單位持續合作執行安全無人機操作規則。 加拿大運輸部將對本方案定期進行評估並於2025年前完成總體檢視,並公布2025-2030年的無人機發展方案。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。