本文為「經濟部產業技術司科技專案成果」
美國大聯盟(Major League Baseball Properties , 簡稱MLB) 日前於美國紐約南區地方法院對美國運動遊戲卡製造商Upper Deck Entertainment (簡稱Upper Deck) 提出商標侵權訴訟,MLB主張Upper Deck於2009年到2010年期間所新製造、銷售、販賣之棒球卡系列上,球員制服上的隊名logo的標示為不當使用,侵害MLB之商標權;MLB並同時聲請暫時禁制令 (preliminary injunction),禁止Upper Deck之經銷商銷售、販賣相關系列商品。 2009年8月,MLB與另一運動遊戲卡製造商Topps簽定商標獨家授權合約,約定Topps為MLB唯一合法授權之美國大聯盟系列之棒球用品製造商,此一行為意謂Upper Deck與MLBP之間長達30年的合作關係宣告終止。故Upper Deck 2009-2010年之最新棒球卡上已未標示MLB之商標,而僅以職業棒球球員穿著該隊制服及棒球帽之肖像,甚至在稱呼球隊名稱時也刻意省略隊名,僅以地名代替,如波士頓紅襪隊(Boston Sox)僅簡稱波士頓(Boston);然而,此舉仍被MLB認為係不當使用MLB商標而提起商標侵權訴訟。Upper Deck稍早僅向經銷商表示,其所製造及販賣之商品並無侵害MLB的商標權,亦無不合法。另,1998年MLB同樣以Pacific Trading Card, Inc.所製造、銷售的運動卡未經MLB商標授權為理由,向紐約法院聲請暫時禁制令,禁止Pacific之經銷商販售相關產品,但紐約法院駁回MLB禁制令之聲請,雖然MLB當時有上訴至第二循廻法院,卻因嗣後與Pacific和解而撤回本件上訴案。故,MLB此次所聲請之暫時禁制令的發展,未必不利於Upper Deck。 目前本案僅MLBP提出聲明,Upper Deck之抗辯尚未公開,MLBP先前與Pacific之商標侵權案以和解終結,本案Upper Deck之使用方式是否侵害MLBP所擁有之30隊美國大聯盟職棒logo及隊名之商標權,將待法院後續判決。
加州消費者隱私保護法修正法案重點說明隨著個人資料保護意識的興起,各國也持續增修法律來保護人民權益以及協調產業標準,但這變動的過程會對本來就複雜的法律結構帶來更多挑戰。 如美國同時會有聯邦法與州法兩個層次的法律,當兩者分別發展隱私權相關法律規範時,難免會缺乏協調,出現定義不明的重疊規範,進而提高企業之法令遵循成本與管理成本。最終導致的結果,就是非必要地降低了產業發展速度,以及提高了消費者獲得服務的成本。 日前美國加州政府修改了首部以消費者個人資料權利為規範之州級法律「加州消費者隱私保護法(California Consumer Privacy Act, CCPA)」,使該部法案對於個人資料保護與利用之規範日漸完備,並減少與聯邦政府重複管轄項目,進而達到合理降低州內企業的遵法成本。美國加州州長紐松(Gavin Newsom)簽署的CCPA修正案「AB-713號法案」(Assembly Bill No. 713, an act to amend Sections 1798.130 and 1798.145 of the Civil Code )通過後,CCPA之適用範圍將限縮。若「同時符合」下列二者條件,則可免受CCPA規範: 受「加州醫療資訊保密法」(the California’s Confidentiality of Medical Information Act, CMIA)所規範的的醫療資訊及個人健康資訊之衍生資訊,或受「美國聯邦受試者保護通則」(Federal Common Rule for human research subjects) 所規範的可識別之個人資訊。 根據「健康保險可攜性及責任法」(Health Insurance Portability and Accountability Act, HIPPA)之標準,已去識別化的資訊。 換言之,已經依HIPAA標準去識別化之第一點資訊,即可豁免CCPA針對個人資料保護之相關規定。此將減輕本身不受 HIPAA 規範,但因進行研究或業務目的需接收 HIPPA 去識別化資訊企業之合規負擔。 「AB-713號法案」對於已去識別化資訊之利用或販售行為,增設了契約須載明下列規範架構之條款內容: 如有利用或販售去識別化資訊涉及病患資料者,須在契約中予以聲明。 禁止買受人或被授權利用人以任何方式重新識別去識別化資訊。 除法律另有規定,或第三方受到相同或更嚴格限制之個資保護約束,買受人或被授權利用人不得將去識別化資訊再行揭露予第三方。 「AB-713號法案」亦要求進行CCPA所涵蓋販售或揭露去識別化病患資訊的企業,其隱私政策聲明應納入以下內容: 將出售或揭露去識別化病患之資訊; 採用HIPAA所允許如專家法(Expert determination)或安全港法(Safe harbor)等之何種方式,進行病患資訊之去識別化。 整體來說,「AB-713號法案」讓CCPA的規範稍加鬆綁,明確排除CCPA對特定去識別化資訊之適用,並擴張對研究行為之豁免範圍,在處理上有更多彈性,惟同時也要求企業須充分揭露其個人資料處理原則。
美國聯邦巡迴上訴法院判決 FCC無權要求網路中立性2010年4月6日美國聯邦哥倫比亞巡迴上訴法院於Comcast v. FCC一案中,判決美國聯邦通訊傳播委員會(FCC)要求網路服務供應商(ISP )對所有形式資料傳輸一視同仁的「網路中立性」要求係逾越權限,有違法律保留原則。此裁判將為美國大型網路內容提供業者(ICP)的經營模式及網路使用者上網習慣投下震撼彈。 網路中立性(Net Neutrality)係指同一ISP應公平地處理所有網路服務,不得因頻寬需求而有差別待遇。查原因案件乃業者Comcast禁止某些用戶透過網路點對點(peer-to-peer)的方式,傳輸大型影音檔案,其認為用戶這種做法會佔用過多頻寬,拖累其他用戶的網路速度;FCC則認為Comcast此舉違反了網路中立性。 在判決書中,哥倫比亞巡迴上訴法院援引判決先例(stare decisis),認為立法者課予FCC必須對全美人民提供一「公平、有效率、公正分配」的廣電服務。惟本案FCC擅以立法者未明確授權的網路中立性作為規制準則,逾越其管制權限而違法。 FCC發言人Jen Howard表示:「法院沒有道理否定保障網路自由與開放的重要性,也不該阻止其他可促成這個重要目的的方法。」此判決對諸多大力提倡網路中立性的大型ICP業者,無疑是一大打擊;ISP將來也可能對消費者依照資料傳輸流量分級收費(即tiered service),形成新的網路服務發展型態。FCC目前正極力爭取立法者通過「網路中立性法案」尋求管制的合法性,後續發展值得注意。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)