替代能源有著落了?!

  國際油價持續飆漲,如何找到替代能源,已成為生技發展的一項重要課題,財團法人生物技術開發中心過去兩年密集和美國德拉瓦州的 Fraunhofer 分子生物科技中心( Fraunhofer USA Ins.- Center for MolecularBiotechnology )技術合作,以微生物發展工業酵素,可取代乙二醇( EG )做為塑膠材料,這項合作已吸引台塑及中油的高度興趣。


  生技中心自去年起與美國 Fraunhofer 衍生公司 Athenabio 合作,投入二十萬美元發展工業酵素,以微生物來取代化工製程,開發出一三丙二醇。這項化工原料在西方已被視為取代乙二醇,扮演「生化煉油廠」的典型產品,結合對苯二甲酸( TPA )後,可做為保特瓶等塑膠容器。


  除了工業酵素外,生技中心也與美國 Fraunhofer 分支機構分子生物科技中心簽署合作協議,計劃未來兩年內,以植物根部來生產流感疫苗,而以植物來生產流感疫苗的技術,其收成期僅需二至三周,每公斤的植物根部可生產的疫苗約.二至.五毫升,同時可省下四億美元投資額的生物發酵槽。此項利用植物扮演製藥廠的構想,該中心算是這項領域的技術領先者,以相同的技術所生產之炭疽疫苗,已獲美國食品藥物管理局( FDA )核准進入臨床( IND ),將進行一期臨床試驗。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 替代能源有著落了?!, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=464&no=64&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
法國通過新的加密貨幣監管法律

  2017年5月,馬克宏政府上任後,積極推動新興創新技術,以期將法國建設為新創國度。在此施政方針下,政府於2018年間提出「企業成長與轉型法案」(The PACTE draft Bill),並於2019年4月11日經法國國民議會通過,係為《企業成長與轉型法》(La loi PACTE)。   本法主要針對六大議題做改革,包含:企業成長及交接程序、擴增企業社會責任及員工參與率、資金、數位轉型及創新、行政流程簡化、提高國際競爭力。在「數位轉型及創新」部分,該法為「首次代幣發行(Initial Coin Offering, ICO)」和「數位資產服務提供者(Digital Assets Services Providers, DASP)」建立一法律框架,其主要制度內容,大抵有四: (一) ICO之選擇性憑證(Optional visa):   ICO發起人在符合一定要件時,「得」向法國金融市場管理局(Autoritédesmarchésfinanciers, AMF)繳交相關資訊文件,以獲憑證;如未為之,募資仍屬合法,惟不得公開徵求資金、發起資助,僅可進行廣告活動。 再者,獲得選擇性憑證必須符合以下要件,包含: 代幣發行人在法國成立或註冊合法之法人組織; 提供的資料文件上,須載明代幣發行、籌資計畫、公司等所有相關資訊; 必須有一個系統機制,來監控和保護在銷售過程中收集的資產; 遵守反洗錢(Anti money Laundering)和恐怖份子籌資活動(terrorist financing)相關規定。 (二) 數位資產服務提供者之選擇性特許(Optional license):   數位資產服務提供者,「得」主動向AMF申請特許並受其監督;如未為之,仍屬合法,惟不得公開徵求資金、發起資助,僅可進行廣告活動。   然而,須注意的是,無論服務提供者是否申請特許,凡「向第三方提供數位資產保管服務」或「買受數位資產以換取法定貨幣」者,皆須至AMF辦理註冊事宜。 (三) 允許二種資金可投資於數位資產:   該法指出,「符合市場流通性和估價規則之專業投資基金」和「專業私募股權投資基金」可投資於數位資產。 (四) 強化AMF之監管權力:   該法賦予主管機關AMF一定之監管權力,包含: 得監督「已獲選擇性憑證之ICO」及「經選擇性特許之服務提供者」,於其未遵守法規時,施以制裁。 得公布違法ICO及服務提供者之「黑名單」。 得封鎖數位資產服務之詐欺網站。

日本發布新版之農業資料利用推動報告,並透過資料交換及利用機制確保資料共享及協作

日本農林水產省於2025年9月在智慧農業網站上發布新版之農業資料利用推動(下稱報告),其內容包含2025年通過閣議決定之食材、農業、農村基本計畫,並指出為確保農業數位資料與人工智慧(下稱AI)之間的串聯應用,農業資料合作基礎平台(下稱WAGRI)的建立與資料協作、共有、提供功能是其不可或缺的要素。 報告指出,透過各式農業數位資料的蒐集與整合,諸如過往作物收成量資料、市場價格資料、土壤資料、農地資料、氣象資料等,並經過統合及分析後,可以達到提升作業效率及收益、減少勞動作業時間與器材損耗,以及降低環境負荷之效果。截至2025年9月為止,WAGRI網站上已提供高達223種農業數位資料相關的API,供農業領域從業者介接運用,並作為未來開發農業領域基礎AI模型的前置準備。 此外,報告亦指出WAGRI已於日本全國範圍內蒐集大量的農業數位資料,用以開發農業領域之基礎AI模型,並預計於2026年在WAGRI網站上提供基礎AI模型服務。未來農業領域從業者可透過WAGRI網站提供之基礎AI模型服務,輔以自身之農業數位資料,建立符合自身農業場域特性之特化型AI模型。 然而,報告亦指出不論是農業數位資料的API介接運用,還是將農業數位資料用以開發基礎AI模型,農業數位資料之法制配套仍需整備。因此,除了資料權屬等關係釐清外,報告特別提出於AI開發應用、資料共享之模式下,尚須建立「涵蓋資料整體生命週期之資料交換及利用機制」,包含資料對外公開之選擇權、資料提供之事前同意權、資料安全管理對策,以及資料刪除請求權等範圍,以確保農業數位資料在利用前的安心共享與協作。 我國政府如欲於農業領域發展基本AI模型,除應於全國範圍內蒐集大量之農業領域數位資料外,亦應建立串聯資料整體生命週期之資料交換及利用機制,以降低農業數位資料之間的協作風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

可專利性(Patentability)與專利適格(Patent-Eligibility)有何不同?

  可專利性(Patentability)與專利適格(Patent-Eligibility)常被混用,但實際上兩者並不可以畫上等號。   具專利適格不等於可專利一事,在指標判例In re Bilski可窺知端倪:「新穎性(Novelty)、進步性(Non-obviousness,或稱非顯而易見性)的分析,和35 U.S.C. §101(專利適格的法源)無關,而是分別以35 U.S.C. §102、35 U.S.C. §103作為法源。」顯示專利適格、實用性(Utility,或稱「產業利用性」)、新穎性、進步性,互不隸屬。梳理美國專利法教課書(Casebook)和判決內容,可知:「專利適格」是取得專利的基礎門檻、資格,具專利適格,並不必然可專利,還須符合實用性、新穎性、可進步性,才是一個「可專利」的發明。另應強調,「專利適格」除了需要滿足§101法條文字外,還需要滿足美國專利與商標局(USPTO)的兩階段標準(Two-Step Test)審查。   綜上,可整理出這個公式: 可專利性=專利適格(§101+兩階段標準)+實用性(§101)+新穎性(§102)+進步性(§103)   觀察美國專利法教科書的編排方式,亦可了解思考脈絡:先介紹專利適格,再依序介紹實用性、新穎性、進步性。另,「實用性」在作為名詞時是採“Utility”一字,而非“Usefulness”,這兩個詞微妙的差異是前者具「有價值的(Beneficial)」之意涵,也呼應Justice Story在 Bedford v. Hunt對「實用」(Useful)經常被援引的解釋:「要能在社會中做出有價值的(Beneficial)應用,不可以是對道德、健康、社會秩序有害(Injurious)的發明,也不可以是瑣碎(Frivolous)或不重要的(Insignificant)。」

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP