國際油價持續飆漲,如何找到替代能源,已成為生技發展的一項重要課題,財團法人生物技術開發中心過去兩年密集和美國德拉瓦州的 Fraunhofer 分子生物科技中心( Fraunhofer USA Ins.- Center for MolecularBiotechnology )技術合作,以微生物發展工業酵素,可取代乙二醇( EG )做為塑膠材料,這項合作已吸引台塑及中油的高度興趣。
生技中心自去年起與美國 Fraunhofer 衍生公司 Athenabio 合作,投入二十萬美元發展工業酵素,以微生物來取代化工製程,開發出一三丙二醇。這項化工原料在西方已被視為取代乙二醇,扮演「生化煉油廠」的典型產品,結合對苯
除了工業酵素外,生技中心也與美國 Fraunhofer 分支機構分子生物科技中心簽署合作協議,計劃未來兩年內,以植物根部來生產流感疫苗,而以植物來生產流感疫苗的技術,其收成期僅需二至三周,每公斤的植物根部可生產的疫苗約○.二至○.五毫升,同時可省下四億美元投資額的生物發酵槽。此項利用植物扮演製藥廠的構想,該中心算是這項領域的技術領先者,以相同的技術所生產之炭疽疫苗,已獲美國食品藥物管理局( FDA )核准進入臨床( IND ),將進行一期臨床試驗。
本文為「經濟部產業技術司科技專案成果」
英國發布第二次「衛星直連手機服務」意見徵詢 資訊工業策進會科技法律研究所 2025年06月10日 近幾年,隨著低軌衛星通訊網路的逐漸成形,衛星直連手機(satellite Direct to Device, D2D)服務之實驗與商用案例陸續出現,亦帶動各國在法制層面之推進。美國聯邦通訊委員會(Federal Communications Commission, FCC)於2024年3月通過以衛星擴充地面通訊覆蓋範圍之授權規範,建立全球首個利用行動通訊頻譜提供D2D服務之監管框架[1];加拿大、澳洲亦有相關政策文件之發布。而英國則透過兩次之衛星直連手機服務意見徵詢,徵集公眾對D2D服務提供之需求、影響、技術條件與法規調適方案之建議。 壹、背景摘要 英國頻率主管機關通訊傳播管理局(The Office of Communications, Ofcom)於2024年7月23日發布「改善來自天空及太空之行動連接」(Improving mobile connectivity from the sky and space)文件,為第一次「衛星直連手機服務」意見徵詢。該次討論主要針對D2D可能之服務模式、D2D服務如何讓英國人民與企業受益,以及各模式將面臨之法規調適議題進行說明[2]。 根據該次意見徵集之結果,Ofcom指出D2D服務可帶來多項潛在效益,包含(1)擴充語音、簡訊與資料之傳輸服務範圍至地面網路無法觸及之區域,實現全英國戶外無所不在之連結性;(2)為受天然災害或極端氣候事件影響,發生電力中斷或網路失效導致無發運作之基地台提供備援,提升行動網路之韌性;以及(3)以上述效益為基礎,強化民眾對緊急求救電話之近用性。 因此,Ofcom於2025年3月25日發布名為「在行動頻譜頻段實現衛星直連手機服務」(Enabling satellite direct to device services in Mobile spectrum bands)之第二次公眾意見諮詢文件,進一步針對授權D2D服務於3GHz以下、大多數已許可由行動網路經營商(Mobile Network Operator, MNO)使用之頻段內應用,而需釐清之具體適用頻段、技術限制、授權路徑等事項提起討論[3]。 貳、重點說明 意見諮詢文件首先針對適用範圍進行釐清,指出所謂之D2D服務僅限於利用既有分配予行動手機/行動網路頻段之類型,而不包含使用行動衛星服務(Mobile Satellite Service, MSS)頻段者。同時,其進一步限縮頻譜管理議題之指涉對象,說明雖D2D系統由兩種雙向無線電鏈路組成,但本次文件僅就服務鏈路[4](Service Links)部分進行討論。 其次,考量到D2D服務應僅由與取得全國範圍相關頻率使用許可的MNO合作之衛星經營商提供,以在全英國境內提供D2D服務。文件提出3GHz以下、屬於分頻雙工(Frequency Division Duplex, FDD)與補充下行鏈路(Supplementary Downlink, SDL)之頻段作為未來可能提供D2D服務之選擇頻段,此些頻段皆以全國範圍為基礎進行許可,包含700MHz、800MHz、900MHz、1400MHz、1800MHz、2.1GHz與2.6GHz。Ofcom並指出為避免地面與衛星網路間的互相干擾,衛星經營商與MNO應密切合作、協調使用頻率,且或有需要在使用相同頻率時進行地理區隔。 再者,Ofcom從技術層面說明如何避免對同頻段或相鄰頻段之其它行動網路造成干擾。文件提出兩項具體要求,分別為限制衛星在行動下行頻譜之發射功率(依適用頻段有所不同),以及要求衛星傳輸之最低仰角不得低於20度。 最後,針對目前手機與衛星間之訊號傳輸、接收非屬過往許可豁免範圍所能涵蓋之情況,Ofcom提出三種可能之解決方案如下:(1)新增相關許可豁免規定;(2)對MNO既有的基地台許可進行變更,搭配許可豁免;以及(3)建立一套新的許可制度。由於依據第二種解決方案,Ofcom能於變更許可之時,要求MNO提供擬用於D2D服務之詳細頻率資訊、證明其能符合Ofcom要求之技術條件,以及展示其已與衛星經營商簽訂包含頻率協調、遵循技術條件之協議。且若干擾發生,Ofcom將可直接對MNO採取相關監管措施,從而有效解決干擾問題,因此該方案為Ofcom較偏好之選項。 參、簡析 考量我國既有通訊基礎建設密度高,且多數地區已有良好之4G/5G覆蓋之現況,相較於幅員遼闊且部分區域地面通訊網路布建困難的國家,衛星通訊於我國在地面覆蓋擴充之角色相對有限。惟就地理條件而言,我國位處地震帶,且每年夏秋期間常受颱風侵襲,因此在緊急通訊面向上,衛星通訊之災害應變、增加通訊韌性等功能即具有相當之重要性。在2024年4月花蓮大地震發生後,數位發展部首次提供低軌衛星設備於災區建立通訊網路,透過接收OneWeb低軌衛星訊號並將其轉換為Wi-Fi網路,使救災人員能即時將現場影像和語音回傳應變中心,對救災進度起到良好的推進作用,可見其在我國之應用潛力。 然而,若欲推動衛星通訊服務於一般公眾間之普及,勢必需利用既有已分配予MNO之頻譜資源,使市面上販售之手機得與衛星建立通訊鏈路,進而提供簡訊、語音傳輸等D2D服務。惟此一應用之實現,將涉及頻譜核配、干擾處理、電臺設置與使用管理等規範調適議題。有鑑於我國既有之700MHz、900MHz 和 1800MHz等4G頻段使用執照將於119年到期,屆時或將需透過無線電供應計畫之修正,研議釋出相關頻段供行動通訊與D2D服務共享使用,並同步檢討干擾處理、釋照管理機制等制度。英國本次公布之「在行動頻譜頻段實現衛星直連手機服務」諮詢文件,已由政策層面之討論深入至具體監管規範方案之提出,涵蓋適用頻譜、限制條件,以及授權機制等面向,其相關建議與後續公眾意見之回饋,將可作為我國未來頻譜監理機制調適之重要參考。 [1]Federal Register, Single Network Future: Supplemental Coverage From Space; Space Innovation, https://www.federalregister.gov/documents/2024/04/30/2024-06669/single-network-future-supplemental-coverage-from-space-space-innovation#page-34167 (last visited Jun. 5, 2025). [2]Ofcom, Improving mobile connectivity from the sky and space, https://www.ofcom.org.uk/siteassets/resources/documents/consultations/category-2-6-weeks/call-for-input-improving-mobile-connectivity-from-the-sky-and-space/main-documents/call-for-input-improving-mobile-connectivity-from-the-sky-and-space.pdf?v=370909 (last visited Jun. 5, 2025). [3]Ofcom, Consultation: Enabling satellite direct to device services in Mobile spectrum bands, https://www.ofcom.org.uk/spectrum/space-and-satellites/consultation-enabling-satellite-direct-to-device-services-in-mobile-spectrum-bands (last visited Jun. 5, 2025). [4]衛星與使用者裝置之間的通訊鏈路。
美國強制電子通訊服務提供者保存用戶紀錄之立法提案引起強烈抨擊由美國共和黨所倡議的法案「Internet Stopping Adults Facilitating the Exploitation of Today's Youth Act of 2009」(S. 436,H.R. 1076),於今年2月13日交由參、眾兩院進行審議;鑒於網路色情危害青少年之問題相當嚴重,該法案訂定了加重色情犯罪刑度及其他數項保護措施,旨在減少網路色情對於兒童的危害。但其中一項措施要求電子通訊服務者、遠端電腦服務提供者,對於隨機配置之暫時性網路位置等相關可識別用戶身份的紀錄及資料,應保存至少兩年,引發業者及隱私權保護團體極大的反彈聲浪。 業者反彈的原因在於依據18 U.S.C §2510對於「電子通訊服務」(electronic communication service)之定義,係指「提供使用者接收、傳送有線或電子通訊的服務」,幾乎囊括所有類型的資通訊服務提供者;倘若法案通過,則如AT&T、Verizon電信業者、Comcast有線電視營運商、網路電話業者、提供Wi-Fi接取點服務者、及動態主機隨機配置IP位置之服務提供者等,未來皆須依規定負有保存記錄至少兩年的義務,將導致其儲存設備之成本大增。 此外,保衛隱私權團體大力抨擊此種無差別強制保存用戶特定紀錄的作法,形成潛在傷害隱私權的危機,若是保管不當而造成資料外洩、或資料遭不當使用,其受害規模將難以估算。由於業者及民間反彈聲浪相當大,參、眾兩院是否通過此法案,或做出若干調整,仍待後續觀察。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)