美國接連發生電腦仲介商 ChoicePoint 與 NexisLexis 分別於 2004 年 10 月及 2004 年 4 月電腦遭入侵,數以百萬計的個人資料被竊取之事件,使得個人資料外洩的問題,受到美國國會的強烈關注。此一事件的發生,同時讓大家注意到加州資料庫外洩通知法( SB1386 )對於消費者保護的重要性。 SB13866 法要求持有個人敏感資料的組織、企業,當資料外洩時,需立即通知當事人。 Choice point 此次即是迫於加州州法的規定,於 2005 年 2 月通知了 3 萬 5 千名加州州民關於其個人資料遭受竊取的的消息。 鑑於個人資料保護的重要性,美國國會議員 Charles Schumer ( 紐約州 ) and Bill Nelson ( 佛羅里達州 ) 仿照 SB1386 加州立法,於 2005 年 4 月 12 日舉辦了「 2005 年個人資料保護風險通知義務法案」( Notification of Risk to Personal Data Act of 2005 )的公聽會。草案建議成立聯邦性法律,要求企業或政府,一旦其持有之個人資料遭到竊取,即需通知當事人。本草案同時明訂企業或政府應通知的事項;並擬允許,讓資料遭竊的個人,可於其信用報告中顯示其 7 年內可能遭受詐欺警告的紀錄。 本法案中除了包含 SB1386 的規定外,也對販賣個人敏感資料進行規範,並要求聯邦貿易委員會( Federal Trade Commission )設立相關組織,以協助資料遭竊之被害者。
歐盟通過新電視指令歐盟27個會員國於5月24日在布魯塞爾通過新的電視指令(neue Fernsehrichtlinie),內容涉及「在線或離線電視服務(Fernsehen on- und offline)」、「廣告規範」及「來源國原則(Herkunftslandsprinzip:指跨國服務或商品依據來源國之標準處理。)」。新的電視指令乃源自於有18年歷史之電視指令,並重新命名為「影音媒體服務指令(Richtlinie über Audiovisuelle Mediendienste)」,指令內容包括線上直播節目、近似隨選視訊(Near-Video-on-Demand)、非線性傳輸節目(nicht-linear verbreitetes Programm)。 約一年半前歐盟就電視指令之規範,如何種經由網路傳輸之內容適用電視指令、廣告規範及來源國原則等議題加以討論;不具商業性之私人網站內容,如旅遊紀錄片,則不在本指令適用範圍。歐洲媒體法研究機構負責人Alexander Scheuer指出,類似YouTube網站,因其本身提供服務方式不涉及編輯性責任(redaktionelle Verantowrtung),故亦不在本指令適用範圍內;惟如YouTube將電視頻道引進其網站,則可能有適用本指令之餘地。Scheuer另外指出如何界定非商業性之難題,例如在個人儲存短片的網頁上打廣告,是否具商業性,值得討論。 指令中最具爭議的部份,除新聞時事及兒童節目仍嚴格禁止置入性行銷(Product Placement)外,新電視指令有條件放寬業者經營置入性行銷,前提是節目播出前須向觀眾為置入性行銷之揭露,此項放寬將使正常節目進行因廣告而中斷。另外關於禁止速食廣告於兒童節目中播出之建議則未被採納。 值得關注尚有適用來源國原則下對特定網站所發的禁制令問題,原則上對節目提供者只適用其來源國之法律,但指令第2a條明訂若有緊急情況(如內容違反青少年保護規定),可以對該特定網站發出制禁令,以防止規避會員國較嚴格之相關規定;而是否有緊急情況須提交委員會裁決。 新電視指令通過後引起多方關注,未來適用上仍存有挑戰空間。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」