「食品衛生管理法」及「健康食品管理法」修正草案已於94年11月30日經行政院第2968次院會審查通過,將於近期進一步送立法院審議。未來只要有食品遭檢出含有害人體健康的物質,或標示不清,都一律得先下架禁賣並封存。而食品廣告誇大不實或宣稱具有療效部分,也在這次修法中加重其相關罰則。 本次修法重點為: 一、廣告管理:延長傳播業者保存委託刊播廣告者資料之期間,由原本2個月修正為6個月(食品衛生管理法修正條文第十九條、健康食品管理法修正條文第十五條)。 二、提高罰鍰額度: 1.加重宣稱療效健康食品業者之行政處分,提高其罰鍰額度,由原本6萬元以上30萬元以下,修正為20萬元以上100萬元以下,並規定一年內再違反者,得廢止其營業或工廠登記證照。(健康食品管理法修正條文第二十四條) 2.對於影響民眾飲食衛生安全較鉅之違法情節,提高罰鍰額度,將部分原本3萬元以上15萬元以下或4萬元以上20萬元以下,提高為6萬元以上30萬元以下(食品衛生管理法修正條文第三十一條及第三十三條)。 三、違規業者加重行政處分:違規標示產品 除應通知限期回收改正,進一步明定於改正前不得繼續販賣(食品衛生管理法修正條文第二十九條)。 四、擴大地方主管機關得命暫停作業並將物品封存之範疇(食品衛生管理法修正條文第二十四條)。
德國聯邦專利法院認定人工智慧不具專利發明人資格 但特別點出人工智慧在發明之貢獻德國聯邦專利法院在2021年11月中旬對美國發明人Stephen Thaler(後稱Dr. Thaler)所開發之AI系統(DABUS)是否能成為專利發明人作出判決,儘管AI在研發過程中協助發現問題並解決問題,法院仍認為專利發明人必須為自然人,但特別補充說明這項發明確實有得到AI的幫助。 Dr. Thaler及其法律團隊將該發明在各國進行專利申請。盤點各國智財局或法院之考量:美國專利商標局(USPTO)強調發明人應以自然人為由排除這類案件;儘管英國智財局(UKIPO)認同DABUS富有創新,卻否認其為合法發明人,不過認為有必要檢視AI技術帶給現存專利制度的挑戰,並已啟動針對AI發明之法律改革計畫;至於歐洲專利局(EPO)以不符合自然人或實體等資格而核駁這類案件,然而上訴結果將於12月下旬作出判決。 惟澳洲聯邦法院在7月底逆轉做出法律並未禁止以AI為發明人而提出專利申請之判決,這也是繼南非允許AI作為發明人而取得專利權之後的第二個案例。 根據各國智財局、世界智慧財產權組織(WIPO)與法院多將智慧財產係來自於心智創作,卻未定義該心智創作是來自於人類或AI,可預見非人類主體將可被視為發明人並授予智慧財產權。此外,現行智財法律也有重新檢視與定義之必要性,包括釐清AI演算法與AI開發者之角色以重新定義發明人資格或所有權人等議題。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
中國大陸國家新聞出版廣電總局重新建構網路服務管理規範