可口可樂公司於2011年向內部市場協調局(Office for Harmonisation in the Internal Market, OHIM)申請註冊流線型立體瓶身商標。經OHIM審議後,於2014年3月以本項商標缺乏顯著特徵不具商品區隔性為由,予以駁回申請。為此,可口可樂向歐盟普通法院(EU General Court)提出上訴。 惟法院於日前(2016年2月)做出說明,其判決結果認為立體瓶身並不具備與市場上其他可樂瓶區隔的具體特徵,根據共同體商標條例第7(1)(b)條「若商標缺乏顯著特徵則不允許註冊」。並質疑其所做的市場調查研究,無法證明該瓶身於市場上具有明顯的商品獨特性,不能讓消費者得以一眼看出是可口可樂產品,不符合同條例第7(3)條(足以使商品或服務之相關消費者認識為指示商品或服務來源,得與他人之商品或服務相區別者)排除7(1)(b)之適用條件,基於上述理由判決可口可樂公司敗訴。 透過此案件,一定程度呈現OHIM與歐盟法院在立體商標認定上相對審慎的態度。 在歐盟有關外觀設計與商標的聲請,係依照歐盟「共同體商標條例」(Council Regulation (EC) No. 207/2009)所規範。經申請通過之歐洲共體商標(CTM)註冊,得使產品或服務於全歐盟境內28個會員國享有排他性權利。而過往以販售之商品外觀或形狀申請註冊商標是具有難度的,必須係該外觀及形狀為增加其商品本身的價值或生產技術上所必要的結果,始得有商標註冊的可能。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
眾所矚目的LG對廣達權利金訴訟案有了初步的進展今年1月16日(週三),美國聯邦最高法院將韓國LG電子公司與台灣廣達(Quanta)電腦公司的訴訟案排入審判的程序之中,並預計今年六月底左右會有相關的判決結果產生。此案件之所於引人注目,主要是本案爭議的內容在於LG公司將其記憶體相關的專利權授權給美國Intel公司。而台灣廣達公司自Intel公司購買部分經LG授權的零組件,並用來製造筆記型電腦。 LG公司發現此情形之後,遂向美國法院控告廣達公司的行為侵害該公司的專利權,LG公司主張其授權並不包含對Intel公司以外的廠商,所以廣達公司的行為侵害該公司的權利;但廣達公司則主張Intel公司已取得授權,有權對外銷售,因此廣達公司的行為是合法的行為。 由於美國地方法院判決對LG有利,所以廣達公司不服因而提起上訴,本案也已經進入聯邦最高法院的訴訟程序,最後判決結果如何,將影響未來專利權擁有者與被授權者之間的關係,究竟收取權利金的範圍是否及於供應鏈或中下游的廠商等,成為眾人關注的焦點,也因此相關產業人士皆十分關注本案的發展。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。