加州通過美國第一個限制溫室氣體排放法案

  加州是全球第十二大製造二氧化碳排放量的地區,也是美國最重視環境立法的一個州。今年八月底,加州通過全美第一個限制人為溫室效應氣體排放法案- 2006 年全球溫室效應對策法( Global Warming Solutions Act of 2006 ),希望透過該法在 2020 年以前,將溫室氣體排放量減至 1990 年的水準(約減少 25% ),而諸如發電廠、水泥工廠等溫室效應氣體最大的來源,則將被要求報告它們的排放量。


  雖然全球溫室效應對策法中並未規定特別的機制(例如歐盟所採取的排放量交易機制)以達到前述目標,不過加州政府仍希望藉由其率先立法的舉動,能引起全美各地效法,進而「由下而上」(
bottom-up )促使聯邦政府採取必要措施。


  目前美國聯邦政府以強制減少溫室氣體排放可能損及經濟,並不應將開發中國家排除在外為由,在
2001 年決定退出有 160 國簽署的京都議定書。不過隨著加州通過 2006 年全球溫室效應對策法,加入歐盟置身於對抗氣候變化的最前線,毋寧也將對華府增加壓力,未來聯邦政府仍須審慎考量是否以強制之立法手段,而非布希政府所偏好的自願性手段,來解決全球暖化的問題。

相關連結
※ 加州通過美國第一個限制溫室氣體排放法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=478&no=64&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵

陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

智慧財產權管理標準之建立-由管理系統標準談起(上)

澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架

澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).

日本通過國家戰略特別區域法修正案

  日本國會在2020年5月27日通過《國家戰略特別區域法》修正案(国家戦略特別区域法の一部を改正する法律),亦即「超級城市法」(スーパーシティ法)。所謂超級城市,係指符合(1)在交通、物流、支付、行政、醫療、照護、教育、能源/水、環境/垃圾、防災/安全等10大領域中,至少滿足其中5個領域日常生活需求;(2)加速實現未來社會生活;(3)透過民眾參與,建立從民眾觀點出發之理想社會等三大條件之未來都市。   超級城市法修正重點有二,首先為實現超級城市構想之相關制度整備,包括(1)賦予蒐集、整理、提供各種類型服務相關資料之資料聯合平台(データ連携基盤)業者法律上地位;(2)因相關制度涉及不同法規及主管機關,故超級城市法內特別設計可併同檢討跨領域法規修正之特別程序;(3)其他規定︰如明定各中央政府機關應提供具體協助、應檢討制定Open API規範,以及本法施行後3年應檢討施行狀況等。其次,本次修法新增地區限定型之監理沙盒制度(地域限定型規制のサンドボックス制度),針對自駕車、無人機等科技創新實驗,透過強化事後監督體制,事前放寬道路運輸車輛法、道路交通法、航空法、電信法之限制,以加速實驗進行。

TOP