「蛋白質體學」是醫學研究的新領域,透過對「蛋白質變異」的研究來瞭解疾病的機制,現在已經可以成功診斷出許多疾病。不過,因為血液中跟疾病有關的「標記蛋白質」,含量往往很低;傳統「酵素免疫法」( ELISA )的檢測流程總得進行個大半天,往往造成時間的浪費。
中央研究院發表獨步全球的「磁性奈米粒子」質譜驗血技術,只要使用小學生使用的磁鐵,就可以迅速「大海撈針」,從血液中吸出和SARS、癌症、中風等病症相關的標記蛋白質,可以在一小時內診斷病情。這項研究成果正在申請國內外專利,臨床實驗、認證後,民眾未來只要多花幾百塊錢,就能夠享受這項最新的奈米科技。不管胃癌、乳癌或大腸癌,只要 ELISA 能夠檢測的項目,這套技術都可以更有效率地完成。不過因為「質譜儀」價格昂貴,臨床運用又需相關認證,普及化可能還得再等一段時間。
本文為「經濟部產業技術司科技專案成果」
經濟部、金管會刻正規畫將企業員工分紅改列費用,並預計自九十六年度實施,以與國際會計處理原則接軌,預料將對高科技業將造成相當之衝擊。 國際會計準則都是將分紅列為費用計算,唯獨台灣是用盈餘在分配員工分紅,為與國際會計準則接軌,將分紅列入費用應是未來趨勢,可讓財報更加透明化,新今年 4 月 28 日 立法院修正通過的商業會計法第 64 條規定,公司企業應將員工分配盈餘在財報上改列為費用,以公平市價作為計算基準,並將另採行政命令或解釋令公布入帳方式。 不過員工分紅若以市價列入費用,公司帳上賺的錢就會減少,尤其是高價股、高配股的公司影響尤甚;另一方面,新規定亦可能使這些公司趕採股票選擇權,以或提高底薪、現金分紅等方式來降低衝擊,否則若是獲利都被「員工配股」稀釋光了,財報會非常難看。因此,高科技業者則希望主管機關能放寬買回庫藏股分配員工及員工認股權證規定,以降低衝擊。
何謂「孤兒著作」?「孤兒著作」係指仍在著作權保護期間,但是著作權人不明知著作。依著作權法第10條規定,著作人於著作完成時享有著作權,而著作權之保護期間依著作權法第30條第1項存續於著作權人之生存其間及其死亡後之50年。 在網路普及資訊流通快速之現代,經過不斷的轉載,許多著作權人不明,但是仍受著作權法保護,所謂之「孤兒著作」在市面上不斷流通。此時若與利用孤兒著作,但是不知道著作權人是誰,無法取得授權之情形下,要怎麼辦才不會觸法? 此時依文化創意發展法第24條,想要利用孤兒著作之人,得在盡力尋找著作權人未果後(不知著作權人為何或是著作權人聯繫資訊不明知情形),向智財局說明無法取得授權之原因,並提存一定金額,取得智財局之許可授權後,於許可範圍內利用該著作。又須提存之金額應與一般著作經自由磋商所應支付合理之使用報酬相當。
歐盟針對RFID的重要議題召開辯論RFID 的利用帶來新一波的物流及管理變革,但是侵犯人權及隱私等相關問題也引發了尖銳的討論,英美等國隱私保護團體及國會議員紛紛呼籲英制訂相關的使用規範。 歐盟在 2006 年 3 月 10 日也舉辦了一場公開意見徵詢,主要徵詢意見的議題有跨國 RFID 系統互通、相容,以及在應用上可能因洩漏位址、身份及歷程而導致的隱私及安全問題。資訊社會及媒體委員會主席 Vivien Reding 表示,隨著晶片技術進步,晶片會變得越來越聰明, RFID 全面應用後可能引發的問題可能在未來會越來越嚴重。透過多網路的連結,必然會促進經濟的繁榮及生活品質的提升,但是隱私保護的問題若不解決,將可能會影響這項科技的應用。因此,對於 RFID 未來的應用應該達成一種社會共識( society-wide consensus )並預先建立可信賴的保護機制。 為此,執委會將公開徵求諮詢,預計在下半年會公布意見資料,後續並可能在進行 2002 年電子通訊及隱私保護指令的修正工作及檢討 RFID 頻率的指配。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。