歐盟開創奈米醫學的新革命

  歐盟國家期望未來能夠發現對抗流行性致命疾病的新方法,降低醫療成本,並提高行政體系的效率,成為開創奈米醫學的先驅。


  位於法國南部格勒諾布爾(
Grenoble )的電子科技與資訊實驗室( the Electronics Technology Information Laboratory Patrick Boisseau 說明,奈米分子可以穿透人類身體內的各器官與細胞,克服傳統醫學不能檢測、治療與給藥的地方 因而開啟新興醫療技術的無限可能 未來病人可以接受因其特殊需要而作的治療,降低醫生治療的風險。


  歐盟贊助的眼角膜工程研究計劃(
Cornea Engineering Project )是重新排列組合人類蛋白質,創造與人類眼角膜相似的物質,這比人造眼角膜的治療更有效,且較不會受到排斥。此項計劃每年已幫助歐盟 28,000 人。在編列總預算 437 萬歐元( 541 萬美元)中,針對該項計劃,歐盟已經花費 256 萬歐元( 317 萬美元)。而每年編列 6 億美元( 4 8 4 佰萬歐元)用於奈米科技方面。同樣的,人工關節之再造也幫助歐盟各國 4,000 人。


  奈米科學過去僅著重於電子科學領域的應用,而未來將朝向整合物理學、化學、機械學、生物學與電子學各領域之路邁進。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟開創奈米醫學的新革命, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=486&no=64&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?

  中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。   ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型: 1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。 2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。 3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。

性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化

以Apple Pay服務捲入營業秘密糾紛案為例,提醒企業合作應留意的機密管控作法

2025年8月6日,行動支付技術開發公司Fintiv向喬治亞州北區聯邦地方法院亞特蘭大分院控訴Apple科技公司以詐欺手段竊取Fintiv公司的前身公司CorFire的專屬行動支付技術,違反《保護營業秘密法》(Defend Trade Secrets Act,DTSA)及《喬治亞州營業秘密法》(Georgia Trade Secrets Act,GTSA)等規定,向法院尋求賠償。 Fintiv公司主張Apple公司在2011年至2012年間,以行動支付技術之業務合作為由,與CorFire公司進行多次技術性洽談。Apple公司利用雙方簽訂之保密契約,取得CorFire公司的行動支付技術的詳細實施方案之接觸權限,並要求CorFire公司上傳部分機密資料至Apple公司管理的共享平臺,以促進合作交流關係,最終Apple公司放棄與CorFire公司的合作計畫,Apple公司卻將協商期間所獲技術內容整合,並應用於其在2014年推出的Apple Pay行動支付服務。Fintiv公司進一步主張Apple公司為將Apple Pay商業化,與信用卡處理商及銀行組成企業聯盟,並隱瞞其非法取得技術的真相,宣稱Apple公司自主研發Apple Pay。Fintiv公司指出,Apple公司此舉不僅損害Fintiv公司的合法權益,也嚴重破壞市場競爭秩序。此外,Fintiv公司表示,Apple公司多年來有系統地採取類似策略,如以合作名義獲取其他企業之機密,進而不當使用多項機密以進行商業化使用。 觀察前述實務案例可得知,即使雙方基於保密契約交換機密資料,仍存在終止合作衍生的機密外洩糾紛,如:機密資料歸屬不清、逾越授權範圍使用機密資料等風險。建議企業在「資料提供前」,應先透過「盤點」營業秘密與機密「分級」,確認合適揭露的機密資料,再藉由「審查」機制確認必要揭露的內容;在「資料提供後」,要求他方提供機密資料之「收受證明」以明確歸屬,並在合作關係結束後,要求他方「聲明返還或銷毀機密資料」,以降低他方不當使用機密資料的風險。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP