隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。 依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。 FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。
基改作物MON810,德法命運大不同德國今年1月底通過新修法,使國際知名生技公司孟山都主要用做於飼料的基改抗蟲玉米MON810得以在德國更加順利種植。 原來德國法律規定基改作物與其相同種類傳統非基改作物間的種植距離為150公尺,與有機作物間的距離則為300公尺;但這項距離的規定對於農田面積多數不大的德國西部來說始終是一個問題,新法為此提供了一項新的出路,亦即基改作物種植者可與其相鄰傳統作物種植者簽訂契約來排除前述種植距離的限制,此項契約雖可能使傳統作物必須標示成為基改作物,但預估仍不會減低傳統作物種植者簽訂契約的意願。 專家評論德國這項新的立法仍然為德不卒,由於新立法並未將德國公開註冊制度中基改作物需揭露詳細的種植地點改為只需揭露種植地區,使得反基改分子仍將得以順利找到基改作物並加以破壞。另外,此次亦未修正的鄰田污染賠償責任使專家擔憂基改研究仍將限於校園內。 MON810在另一端的法國則顯得命運多舛,自去年秋天起,法國引用歐盟法的防衛條款(Articles 23 of the EU Deliberate Release Directive)來暫時禁種此一抗蟲玉米,於今年1月初,法國政府為此項問題所組成的委員會向環境部長提交調查結果,委員會主席並對外表示嚴重質疑MON810的安全性,並已取得大量MON810對動、植物負面影響的科學證據,使法國政府於1月中宣佈延續去年的禁種令。但專家質疑委員會主席對於調查報告之陳述失之客觀,由於調查報告中關於MON810商業種植對於環境影響的問題仍懸而未定,事實上並未存有委員會主席所謂的「嚴重質疑」。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
日本專利局公布大學研發成果落地運用案例研究,協助大學衍生新創日本專利局(特許庁)自2019年啟動「智財戰略規劃師派遣計畫」(知財戦略デザイナー派遣事業),向大專院校派遣智財戰略規劃師,發掘大學內部埋藏之研發成果,協助研發成果落地運用或衍生新創公司,進而帶動產業創新。為支援智財戰略規劃師達成上述工作,日本專利局於2023年4月14日公布「大學研究成果衍生新創案例研究」(大学研究成果の社会実装ケーススタディ,以下簡稱案例集),介紹大學衍生新創重要案例,並針對新創公司設立、簽約等各階段,以對話形式說明應注意事項。 案例集分為第1章「新創篇」、第2章「與企業合作篇」,以及第3章「其他篇」,每篇介紹不同案例,一共收錄9個案例,如「以和企業共有之專利作價,投資設立之新創公司」、「AI新創公司之商業模式」、「新藥開發平臺相關之商業模式」、「活用智財戰略設立之新創公司」、「以與企業共同研究為基礎之專利申請戰略」等。上述案例均依照「發現發掘」(発明発掘)、「制定智財戰略」、「預備衍生新創」(社会実装準備)、「支援後階段」等4個流程展開,以圖文及對話形式,提醒規劃師在各階段應注意之支援重點及注意事項,並以專欄形式說明失敗案例,期能作為大學研究者、產學合作窗口衍生新創之參考。