美國賓州(Pennsylvania)眾議院於2024年4月10日通過《人工智慧生成內容的揭露法草案》(House Bill 1598 Disclosure of Artificially Intelligent Generated Content,下稱草案),規範AI生成內容及其利用行為以保護消費者。 草案規定,以AI生成之各種形式內容,在其首次呈現給消費者時應揭露資訊,使消費者知道該內容為AI生成之結果。如果明知或重大過失(Knowingly or recklessly)產出、散布或發布任何未「明確且顯著」(clear and conspicuous)揭露其內容為AI所生成者,即屬「不公平或欺騙性行為或做法」,將被依賓州《不公平貿易行為與消費者保護法》(Unfair Trade Practices And Consumer Protection Law)規定處罰。草案亦說明應如何揭露資訊,方符合條文所謂「明確且顯著」標準,例如針對AI生成之音訊內容,其揭露應以足夠的音量和節奏傳達,以便消費者聽取和理解。 此外,草案也關注兒童保護問題。鑑於AI生成的兒童性剝削圖像通報日益增加,草案最後新增規定,未來不能將「兒童性剝削圖像為AI生成」作為辯護理由,且檢察總長或地區檢察官可起訴製造、持有以及傳播AI生成之兒童色情或性虐待素材等相關行為。 目前草案已在州眾議院通過,由州參議院審議中。草案的提案議員強調,人們有權知道其消費的內容實際上是使用AI產出的成果,因此草案通過後,可望有效遏阻濫用AI的行為,提供賓州民眾更多的保障。
美國CIPU報告指出「智財管理者與企業經營者須具備充足之智慧財產權素養,以處理日常業務上的智慧財產權議題」美國The Center for Intellectual Property Understanding(CIPU,以提高人們的智慧財產管理素養和提倡阻止侵權行為為宗旨的教育推廣非營利組織)於2025年2月19日發布之「Manager and Entrepreneur IP Experience: The Limitations of On the Job Learning」報告指出,於美國從事智慧財產權的美國商業人士於智慧財產權相關問題時有兩大現象,包括:專利人員具備基本營業秘密素養之重要性與日常商務活動之商標、著作權問題日趨普遍。 針對前者,根據Ocean Tomo發布的市場研究,從1975年到2020年,無形資產佔整公司整體價值從17%提升至90%,可見智慧財產權在國際市場的重要性,這也表示有更多不同領域的專業人士在參與處理專利、著作權及商標之問題,包括非法律專業人士,例如工程師、行銷策略師和其他來自教育領域之人員等,但是這些人員之所學很少涉略智慧財產,將導致無法確實有效的因應智慧財產議題,進而造成付出代價高昂的溝通障礙以及難以認定專利是否具備商業應用等負面影響。而一些從事專利領域的人員指出,當了解營業秘密的重要性,將可使從事處理智慧財產相關工作的人員決定是否要保密抑或揭露公開揭露這些資訊。 至於後者,在本篇報告相關的研究指出,高商標註冊率和高獲利及股票回報價值的整體無形資產間存在正向關係。許多受訪者還提到透徹了解商標法對於發展品牌、降低責任風險的方式至關重要。對於生成式AI的領域的企業家,因為侵權和合理使用問題持續存在,所以著作權意識的重要性也隨之提升。而為公司管理著作權資產的專業人士時常有管理多樣化資產的機會,例如廣播、串流媒體的權利金及整個產業鏈的製作成本等。 因此,對於時常接觸智慧財產之產業之相關人員而言,應提供更多智慧財產權相關課程,開發可存取、使用者友善的資源,以彌平從事任何形式的智慧財產權的專業人員法律素養之差距,進而使這些人員足以應對日常業務上可能面臨的智慧財產問題。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟執委會通過下世代接取網路管制建議歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。 在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下: 1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。 2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。 3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。 4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。