科技人力需求缺口持續擴大,海外高科技人才延攬刻不容緩

  高科技人才缺口逐年擴大,據經濟部統計,三年總計僅有一九二二位海外人才來台,政府延攬海外人才績效不及新加波、韓國。新加坡為鼓勵企業延攬國際人才,企業招聘的支出可減稅,並提供人才高薪和住房,在新加坡工作的外籍人員還可參加星政府資助的國內外培訓等獎勵措施。韓國在二○○三年更擴大辦理延攬海外科技人才,除延長外籍人士居留時間、優先核准簽證,外籍技術人員薪資所得並可五年免稅,一年延攬之科技人才高達一萬多人。除此,大陸人才濟濟,新加坡與韓國也主動延攬,新加坡對大陸人才更提供「落地永久居民批准信」。


  相較於星、韓的積極態度,我國政府對延攬海外人才趨向被動,我國高科技人才需求是由產業提出,政府配合提供誘因,我國以補助外籍人員的來回程機票、保險費,及薪給差額等為主。另礙於兩岸關係,國內並不開放引進大陸人士,大陸碩士以上人才來台每年僅兩位數,主要從事研究活動相關,而非長期工作。



  針對目前國內科技人才需求緊迫,立委質疑國內科技人才缺乏,政府禁止大陸人才來台,卻不限制科技人才前往大陸,形成不平衡。經濟部表示,將彙整各界意見,再思索推動政策協助;陸委會則擬在六月底前提出積極管理科技人才前往大陸的辦法。

相關連結
※ 科技人力需求缺口持續擴大,海外高科技人才延攬刻不容緩, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=504&no=64&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
菲律賓基因改造茄子被迫停止田間試驗

  菲律賓為亞洲國家間第一個將基因改造作物(基改玉米)商業化並用於食品和動物飼料者,而另一項正等待商品化的基改作物,基因改造茄子,原預計於今(2011)年底完成7項試驗並於明年達成商品化的目標,卻因未符合地方政府法規所要求的公眾諮詢程序而被迫暫時中斷其中2項實驗。   2010年12月,菲律賓Davo市市長因申請本案田間試驗之UP Mindano公司未遵守應於市政府內張貼公開資訊之法定義務,以違反基因改造作物環境釋放之法規為由,向該公司發出禁止令並銷毀植株,其田間試驗因此延誤了6個月以上。無獨有偶的,作為菲律賓基改作物主管機關的植物產業局,也以同樣的理由中止另一項在Visayes國立大學所進行的基因改造作物田間試驗。   Davo市農業辦公室Leonardo Avila III主任表示,就該公司就試驗田所設立的藩籬實際狀況來看,雙方對於嚴格密閉的田間試驗(strictly confined field trial)有理解上的落差。面對UP Mindano公司於期間未盡公開資訊義務以進行充份溝通的指控,該公司負責田間試驗的科學家Rasco表示,所有爭議皆已透過直接或間接的方式於報紙和公開論壇中予以釐清。甚至嘗試著透過說明會教育大眾關於基因改造茄子的風險和優點,更強調茄子沒有異花授粉植物所會造成的基因汙染問題。   從法規面觀察,此一事件所透露的問題在於,即便一國中央法規允許基因改造作物之環境釋出,地方政府亦有可能藉由地方法規來落實其限制或阻擋基因改造作物之政策或目的,因而中央和地方間之政策歧異也將會成為GMO推展時必須面對的法制議題。

任天堂將自YOUTUBE影片上傳者收取利潤

  YOUTUBE遊戲頻道 - Rooster Teeth’s Let’s Play的建立者Lewis Turner近期擁有111部上傳遊戲剪輯並超過74890次瀏覽量,現被任天堂(NINTENDO)控訴侵害著作權。   任天堂依YOUTUBE的Content ID政策,向Lewis Turner主張凡運用任天堂遊戲剪輯而賺取收益的部分,一旦這些剪輯被識別包含Content ID所認定之完整或部分的內容,均被要求需支付獲利予任天堂。Content ID為YOUTUBE 的著作權政策,有助保護企業並控制相關影片上傳的內容,藉識別使用者上傳的相關影片(視訊或音訊)的內容,與著作權人提供的內容比對是否侵權的功能,進而採取預先選擇的處理方式,如:透過影片賺取收益或封鎖這類的影片。   許多玩家習慣將時下流行的遊戲闖關歷程上傳至社群網站與其他玩家分享,展現如何破解高難度關卡,或進階的闖關技巧,任天堂此舉,招來許多玩家的不滿,甚至表示再也不玩任天堂的遊戲或上傳更多的遊戲歷程剪輯。一名”Let’s play”玩家表示:「電動遊戲非如電影或電視;當我看到別人正在看的影片,我可能不會再去看;但當我看到別人正在玩的遊戲,我會想自己體驗。每個遊戲過程,都有其獨特視覺經驗,藉由瀏覽遊戲歷程能夠引起購買慾望。」   對此,任天堂則聲明,若是為了持續推動並確保為任天堂的遊戲,仍可透過社群平台分享,即玩家仍可繼續在YOUTUBE上分享任天堂的遊戲歷程;而非像對待娛樂公司一樣,阻止玩家使用任天堂智慧財產權(著作權)的原因。

日本內閣府公布知的財產推進計畫2019

  日本內閣府知的財產戰略本部在2019年6月21日公布本年度知的財產推進計畫(下稱本計畫),以「脫平均」、「融合」、「共感」做為本計畫三大主軸: 脫平均:依不同個體特性培養頂尖人材,促進新領域之挑戰及創造。以經產省、文科省、總務省、法務省為主責部會,實施包括培養具出色創造能力之人材、提供新創之後備資源、強化盜版因應對策、EdTech(教育科技)之活用、蒐集「STEAM教育」事例等策略。 融合:透過融合不同特性之分散個體,達成加速創新之作用。以經產省、文科省、法務省、厚生省、農林水產省、公正取引委員會為主責部會,實施包括創建智財資產平台、建構有助於AI及資料創作的相關規範等策略。另外修正資料信託認定方案的相關指針、提出資料銀行相關典範案例亦為重點。 共感:以經產省、總務省、外務省、文科省為主責部會,創造價值實現之友善環境,實施包括強化Cool Japan政策、籌劃音樂著作權利資訊資料庫、規劃能對應跨境傳輸之外語Metadata,協助將日本音樂推向海外市場等策略。   綜上,不難發現日本已將「創造」做為本計畫發展之核心概念。從人材培育、創造資料價值及打造軟實力產值等,都顯示智慧財產除保護之外,更應提升並擴散其價值。回顧我國智財戰略綱領在2017年結束之後,並沒有相關計畫延續。然而智慧財產是一國軟實力之展現。透過潛移默化的浸潤,能達到比任何硬實力還大之功效。我國應該思考如何重啟智財戰略,拓展我國軟性底蘊。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP