世界智慧財產組織 (WIPO)於今年3月報導指出:WIPO於2004年推出了新的E-Pdoc申請系統,這一系統讓WIPO得以用電子形式接收、處理和發送國際專利優先權文件。有了此一電子申請系統,申請人可以要求同一件申請案以其在任何特定簽約國專利局首次提出申請的日期?國際專利申請日。如果申請得到有關國家專利局的專利授權,該先申請日還可以作?獲得國際專利有效保護的起始日期。 受到電子申請系統方便性之鼓舞, 2004年國際專利申請數量激增並正式突破了一百萬件申請的大關,同一年依據專利合作條約(PCT)規定所提交申請的數量也創下紀錄,共計12萬多件。其中美國繼續列在最大用戶榜首,但增長速度最快的是亞洲大陸─即:日本、韓國和中國大陸。
美國證券交易委員會對虛擬貨幣交易平台提起訴訟美國證券交易委員會(The Securities and Exchange Commission,以下簡稱SEC)於2018年11月8日發出聲明,依據1934年的證券交易法(下稱證交法)第21C條對EtherDelta 創辦人Zachary Coburn 提起訴訟,並做出要求其停止交易之禁止令。 EtherDelta 乃為一線上交易平台,允許買家和賣家在其平台上交易「以太幣」和其他虛擬貨幣。其平台特徵有: 提供平台,促成虛擬貨幣交換 EtherDelta之網站提供一線上平台予買賣雙方,對經過平台認證的虛擬貨幣進行交易,促成虛擬貨幣交換。於網站成立之一年半中,其促成了360萬筆訂單。 以智慧合約自動驗證進行交易 EtherDelta以智慧合約(smart contract)維持網站運作,其智慧合約檢查用戶發出之訊息是否有效,於確認買賣雙方帳戶都有足夠資金後,自動進行交易。 提供資訊且對用戶資格未設限 EtherDelta於網站上提供虛擬貨幣之資訊,以及個別虛擬貨幣之每日交易量,同時於網站上顯示前500筆買方和賣方之交易資訊,以價格和顏色進行分類。而其對於成為網站用戶之資格並無限制。 SEC於本案中認為,EtherDelta並未註冊成為證券交易所,卻執行與證券交易相關之業務,已違反證交法,其論述理由為: EtherDelta平台上之虛擬貨幣屬於證券性質 本案SEC使用Howey Test—美國聯邦最高法院於1946年在SEC v. W. J. Howey Co. 一案中所確立之測試要件,來判斷是否符合證券。由於用戶以金錢購買虛擬貨幣,該金錢投資行為建立共同事業,且具有藉由他人努力而獲利之期待,故屬於證券性質之虛擬貨幣。 EtherDelta性質上為交易所,但未為註冊 EtherDelta 作為平台聚集大量投資人,並以智慧合約促成買賣雙方進行虛擬貨幣交換,已屬於實現證券交易之行為,具有證交所功能,故於不具有豁免情形下,其未註冊已違反證交法第5條規定。 本案就SEC之主張,EtherDelta並未為否認或承認之表示,但同意該禁止交易之命令,並同意支付SEC行使歸入權之30萬美元及其他判決前利息和罰款。 觀察目前美國對於虛擬貨幣買賣行為之監管,並無立專法規範,僅以證交法為準則,就個別虛擬貨幣之性質以Howey Test為檢驗,個案認定是否屬於證券。倘若屬於證券,則對於進行交易之平台課予證券交易所之責任,而對於虛擬貨幣而言,被認定為證券勢必被課予義務俾利增加投資人之保障,可能增加公開度及透明度,然其快速籌資之功能亦可能有所減損,SEC對於虛擬貨幣之監管影響與成效均值得繼續觀察之。另外,SEC曾於2017年7月25日針對The DAO做出一調查報告,其於報告中認為證券型之虛擬貨幣需要受到監管,從而本案作為DAO報告之後被裁罰之虛擬貨幣交易平台首例,有其作為里程碑之重要意義。首先其確立了SEC自DAO報告之後對於證券性質虛擬貨幣需監管之見解,再者表達SEC認為就算採用去中心化、分散式節點之方式進行證券交易,同樣屬於證交法所稱之「證交所」,不因此而豁免監管。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。