911 恐怖攻擊以來,美國持續加強國土安全保護,而為保障國家安全及科技競爭力,美國商務部( US Department of Commerce )原本打算制定安全管制規定, 對來自敏感國家之外國科學家, 限制其 使用部分的實驗研究設備。所謂敏感國家( countries of concern ),包括巴基斯坦、印度、俄羅斯及中國,來自於這些國家的科學研究人員若要在美國境內的從事特定實驗研究,因而需要使用特定設施設備者(主要是可用於軍事用途者),不論研究設施設備是屬於聯邦或民間所有,在開始操作、進行安裝、維護與修繕等之前,必須先向美國政府提出申請始可近用。
現行美國有關技術管制規定主要係針對敏感科技的出口,商務部自 2004 年起,即打算推動修正此等規定,進一步將部分可用於軍事用途之研究設施設備予以立法管制,從美國政府所公布的管制清單來看,其涵蓋範圍甚廣,從化學、雷射到細菌培養等各領域之研究設施設備,均涵蓋在內,故商務部此項修法計畫一經公開,立即震撼外界,除學術界及產業界強烈外抨擊,就連聯邦實驗室也大表反對。反對意見多認為,預計的修正規定將會破壞大學校園中之開放精神,影響科學自由的研究環境;而研究設施設備近用之事前許可制,亦將造成學界與業界的負擔;甚至可能阻礙未來大學或業界延攬外國科技人才參與研究計畫之進行,長期而言,實將會戕害美國的國際競爭力。
面對各界反對聲浪,為避免降低研究型企業之生產力,美國商務部在今年 5 月底宣布取消原來的立法管制計畫,不過,商務部將會召集產學研各界專家,組成一個十二人的委員會,持續就實驗室安全管制的問題交換意見,期能獲致更有效之解決之道。
美國德州第一上訴法院於2023年8月的一項裁決強調了以下重點—即便企業的智慧財產權戰略是圍繞在專利申請而建立的,仍應證明其有在專利公開前採取到位的營業秘密保護政策。 在FMC Technologies, Inc. v. Richard Murphy and Dril-Quip, Inc.一案中,FMC是一家石油與天然氣公司,而Murphy是其前首席工程師,可接觸FMC公司重要研發技術。兩者的關係於2018年惡化,同年12月FMC公司提出了ITW系統(orientation-free subsea tree system)的專利申請,Murphy則於隔年5月收到Dril-Quip公司的錄用通知。離職時Murphy有簽署一份協議,承認其有義務為FMC公司持有的專屬資訊保密,並已將所有與工作相關的資訊歸還。 Murphy於Dril-Quip公司被任命負責開發與ITW系統幾乎相同的競爭產品。2020年5月,Dril-Quip公司於海上技術會議發布其下一代海底採油系統(VXTe Subsea Tree)的相關內容,並宣布將商業化生產。據此,FMC公司控訴Murphy使用其花費了多年時間和數百萬美元開發的營業秘密資訊。Dril-Quip公司則辯稱FMC公司所謂的營業秘密可輕易透過一般管道查明,且其未採取合理的努力來防止營業秘密外洩。 在判斷FMC公司是否有採取合理保密措施時,德州第一上訴法院針對其於專利尚未公開及等待核准審定期間是否有採取合理的努力進行審查,並發現下列情形: 1. FMC公司並未根據有存取該機密資訊需求的人設定權限,反而將其工程資料庫開放給所有公司內部的工程師,讓他們都可以遠端存取相關資料。 2. FMC公司並未禁止員工將公司的機密文件複製到外部伺服器上。 據此,德州第一上訴法院認定FMC公司於專利公開前未妥善保護其營業秘密,並認為被告Murphy未不當使用其營業秘密。最終,德州第一上訴法院判被告Murphy勝訴。 由上述裁決可以發現,企業在專利公開前仍應採取營業秘密保護政策,包括:(1)對機密資訊存取的權限控管、(2)規範對機密資訊的使用程序、規定等,以避免在訴訟中失利。關於前述之管理措施,可以參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》,以了解如何降低自身營業秘密外洩之風險,並提升競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本針對國外職業電競選手核發娛樂類簽證日本近年來對於線上遊戲對戰之電子競技活動的觀戰人數逐漸上升,而由於職業電競選手在赴日參加比賽時,會因為獎金收入而面臨申請簽證上的困擾,為了能更有效吸引世界一流選手前日本參賽,實有必要對相關行政程序進行修正。 而根據日本權威經財經媒體「日本經濟新聞」之報導,日本法務省將針對以參加線上遊戲比賽賺取獎金為業的電子競技選手,在入境日本以核發「娛樂類簽證」之方式解決前揭問題,同時透過審查國外選手在母國參與電競活動的實際成績,以防止出現利用此漏洞不法滯留日本之問題。 對於法務省此項決定,日本電玩遊戲相關媒體多以「電競選手待遇將比照運動選手」為題進行報導。然而經查日本法務省針對外國人之入境簽證,依其入境之目的區分為高度專門職、教授教育、藝術文化、宗教、採訪、經營、留學等十六種,而職業運動員簽證事實上並非單一獨立類別,而係與歌唱、舞蹈、演奏、電影製作、商業攝影、商業錄音等共通歸類為「娛樂類簽證」之下,因此日本法務省此一作法是否果真代表在簽證核發一事,已將職業電競選手視為職業運動員,尚難有具體結論。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」