科技產業申請租稅減免 國稅局:申報浮濫

  高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。


  依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。



  國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。

相關連結
※ 科技產業申請租稅減免 國稅局:申報浮濫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=511&no=0&tp=1 (最後瀏覽日:2025/12/30)
引註此篇文章
你可能還會想看
日本簽署SBOM國際共通指引,強化軟體弱點管理,全面提升國家網路安全

由美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency, 簡稱CISA)自2024年以來,持續主導並規劃《SBOM網路安全之共同願景》(A Shared Vision of Software Bill of Materials(SBOM) for Cybersecurity)之指引訂定,作為保障網路安全之國際共通指引。於2025年9月3日,由日本內閣官房網路安全統括室為首,偕同經濟產業省共同代表日本簽署了該份指引,包含日本在內,尚有美國、德國、法國、義大利、荷蘭、加拿大、澳洲、紐西蘭、印度、新加坡、韓國、波蘭、捷克、斯洛伐克等共計15個國家的網路安全部門,皆同步完成簽署。以下為指引之重點內容: 1. 軟體物料清單的定位(Software Bill of Materials, 簡稱SBOM) SBOM於軟體建構上,包含元件內容資訊與供應鏈關係等相關資訊的正式紀錄。 2. 導入SBOM的優點 (1) 提升管理軟體弱點之效率。 (2) 協助供應鏈風險管理(提供選用安全的軟體,提升供應商與使用者之間溝通效率)。 (3) 協助改善軟體開發之進程。 (4) 提升管理授權軟體之效率。 3. SBOM對於利害關係人之影響 (1) 使軟體開發人員可選擇最符合需求的軟體元件,並針對弱點做出適當處置。 (2) 軟體資訊的透明化,可供採購人員依風險評估決定是否採購。 (3) 若發現軟體有新的弱點,使軟體營運商更易於特定軟體與掌握弱點、漏洞。 (4) 使政府部門於採購流程中,發現與因應影響國家安全的潛在風險。 4. SBOM適用原則與相關告知義務 確保軟體開發商、製造商供應鏈的資訊透明,適用符合安全性設計(Security by Design)之資安要求,以及須承擔SBOM相關告知義務。 近年來軟體物料清單(SBOM),已逐漸成為軟體開發人員與使用者,於管理軟體弱點上的最佳解決方案。然而,針對SBOM的作法與要求程度,各先進國家大不相同,因此透過國際共通指引的簽署,各國對於SBOM的要求與效益終於有了新的共識。指引內容不僅建議軟體開發商、製造商宜於設計階段採用安全設計,以確保所有類型的資通訊產品(特別是軟體)之使用安全,也鼓勵製造商為每項軟體產品建立SBOM並進行管理,包含軟體版本控制與資料更新,指引更強調SBOM必須整合組織現有的開發與管理工具(例如漏洞管理工具、資產管理工具等)以發揮價值。此份指引可作為我國未來之參考借鏡,訂定相關的軟體物料清單之適用標準,提升政府部門以及產業供應鏈之網路安全。

資通安全法律案例宣導彙編 第2輯

政府科研計畫執行與貪污犯罪

OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

TOP