本文為「經濟部產業技術司科技專案成果」
美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
美國、日本、韓國舉辦「顛覆性技術保護網路高峰會」,簽署技術保護及出口管制合作意向書美國、日本、韓國於2024年4月25日舉辦首屆「顛覆性技術保護網路高峰會」(Disruptive Technology Protection Network Summit,下稱高峰會),就顛覆性技術保護展開正式合作。 此高峰會係為履行三國於2023年8月18日「大衛營」(Camp David)峰會作出之「未來每年度應至少舉行一次三方國家會談」承諾。美國積極利用此高峰會,深化美國顛覆性技術打擊小組(Disruptive Technology Strike Force)與日本、韓國相應執法單位的資訊交換機制或經驗分享,加強技術保護及打擊相關犯罪活動。有關本次高峰會進展,簡要彙整如下: 一、經驗與案例分享:三國執法單位各自說明其技術保護工具、政策之最新舉措,並進行執法案例分享。 二、相關執法單位簽署合作意向書: (一)美國司法部(The Department of Justice)、日本警察廳(警察庁)和韓國法務部(법무부)共同簽署「深化技術外洩執法資訊分享合作意向書」(Letter of intent on deepening information sharing for tech leak law enforcement)。 (二)美國商務部(The Department of Commerce)、日本經濟產業省(経済産業省)和韓國產業通商資源部(산업통상자원부)共同簽署「實施出口管制合作意向書」(Letter of intent for cooperation on export control implementation)。 三國共識非法出口貨品或移轉技術行為,已對國家安全、經濟安全構成威脅,除持續優化相關法規外,有必要強化三國「執法面」連結,進行較即時的打擊犯罪跨國合作,防範民族國家境外勢力(Nation-state adversaries)以不正當手段獲取先進技術,並建立更全面的國際「顛覆性技術保護網路」(Disruptive Technology Protection Network)。
Uber竊取Waymo無人車技術機密一案,法院裁定返還1.4萬筆機密資料Waymo是Google旗下發展無人車技術的公司,其員工Anthony Levandowski(以下簡稱Levandowski)於2016年2月離職並成立自動駕駛卡車公司Otto,而Uber於同年8月以6.8億美元併購該公司,Levandowski則任職於Uber的自動駕駛車部門。 Waymo在收到供應商誤發的電子郵件發現內含Uber的光學雷達(以下簡稱LIDAR)電路板工程圖,據Waymo表示,LIDAR是一種發展自動駕駛不可或缺的雷射感測器,該工程圖與Waymo設計的工程圖非常相似,此為工程師投入上千小時並投入數百萬美元研發而成。Waymo因而於今(2017)年2月對Uber提出告訴,主張Uber竊取其營業秘密與智慧財產,並表示Levandowski離開Waymo前曾使用私人硬碟下載公司上千筆機密資料,尚包括數名離職員工亦曾下載機密資料,且目前都任職於Uber。 今(2017)年5月美國加州北區聯邦地方法院依Waymo提出的有利證據,包含Uber明知或應知Levandowski握有1.4萬筆與Waymo智財相關的機密資料仍聘僱其為員工;且有完整紀錄顯示Levandowski離職前曾下載Waymo機密文件。因此裁定要求Uber限制Levandowski與相關員工使用與本案相關的LIDAR技術,且須於今年5月31日前返還Waymo,其中包含會議紀錄和Levandowski與相關員工電話紀錄。惟Uber仍可持續發展其自動駕駛技術,但賦予Waymo的律師及技術專家有權監視Uber未來的商業發展,並要求Uber必須在同年6月前調查Levandowski完整的LIDAR技術書面與口頭溝通紀錄,並提交給Waymo。 另方面,Waymo在此同時也宣布與Uber在美國的主要競爭對手Lyft建立自動車駕駛員的合作夥伴關係,挑戰Uber乘車服務的市場地位。本案將於今年6月7日進行審判程序,後續值得持續關注。
美國聯邦加強導入節能績效保證專案,並規劃採購實務增訂規範美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。 美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。 FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。 以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。