英特爾將停用開源碼授權

  英特爾公司宣布,將廢止一項適用於部分自家軟體的開放原始碼授權辦法。這家晶片製造公司表示,已通知開放原始碼促進會 (Open Source Initiative OSI) 移除英特爾的開源碼授權許可,未來不再以 OSI 認可的授權形式繼續使用。 OSI 是一個非營利性機構,其宗旨在推廣使用開放原始碼軟體,並且在 OSI 網站上公布一份開放原始碼軟體授權清單。該公司希望把英特爾開放原始碼授權 (Intel Open Source License) 「移除,未來停用」,藉此降低授權協議日益增多的情形。


   授權協議如雨後春筍般地孳生,已引起開放原始碼社群人士關切,因為授權版本大增之後,有意採用開放原始碼軟體的企業必須多花一些錢評估、管理各類型的授權,無形中導致成本增加。英特爾發言人表示,決定廢止開源碼授權,是發現公司內部數年來一直未使用,公司以外的使用頻率也不高。 Smith 說,英特爾不希望讓這項授權的「解除許可」效力回溯既往,以免迫使企業重新取得程式碼的使用授權。

本文為「經濟部產業技術司科技專案成果」

※ 英特爾將停用開源碼授權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=528&no=64&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制

  川普總統在2018年4月發布「總統管理議程」(President’s Management Agenda)將國家科研成果商業化之發展視為「聯邦跨機關優先目標」(Cross-Agency Priority Goal, CAP Goal)。為維持美國全球科技創新領先地位,美國政府每年投資約1500億美元於各聯邦所屬大學與研究機構進行科技研究。美國國家標準與技術中心(NIST)與白宮科技政策辦公室(OSTP)聯合發起「投資報酬計畫」(Return on Investment Initiative, ROI),宗旨為釋放美國創新(Unleashing American Innovation),讓政府投資預算發揮科研補助之最大效益。   計畫目的包括:1.評估現行政府從事技術移轉指導原則,檢視應予以維持與待改革之處;2.吸引後期研發、商業化與先進製程的技轉投資,並降低法規阻礙;3.支持科研創新產官學合作模式與技轉機制;4.有效移除技轉阻礙以利加速技轉成效,並聚焦於國家重要產業發展的新興措施;5.評估聯邦政府資金運用指標成效;6.創造激勵學研機構提升技轉成效之誘因。   NIST調查指出,阻礙技轉發展之原因包括:1.技轉與智慧財產權協商所涉高額交易與時間成本;2.不同政府單位對法規之解釋、適用與實踐意見相歧;3.智慧財產權保護不足、技術授權使用限制與政府行使介入權(march-in rights)限制;4.公務員參與科技新創與衍生企業(spin-off)限制與利益衝突規範。此ROI計畫已於2018年7月30日完成各方意見徵詢,總計共104份。預計於2019年年初,做出完整分析報告與法制建議。

歐盟議會否決法國所提出切斷網路連接的修正條款

  法國政府基於保護電影、音樂等產業,在2009年3月提出將採取「三振法案」(Three-strikes law),對於不法使用網路下載音樂和檔案者,祭出明確的管制。第一階段違法者將會收到電子郵件警告,第二階段會收到書面之警告,第三階段將切斷該網路連接最長1年。   但這個提議在2009年4月遭到法國議會否決,有議員表示這項規定是「危險、無用、無效率且對民眾有相當大之危險。」消費者團體則表示,「無辜的民眾將會受到處罰,而駭客等真正的犯罪者則可以利用入侵他人之帳號規避法規,而且,該架構顯然缺乏配套的監督機制。」   無獨有偶的是,歐洲議會(European Parliament)也在同年11月針對歐盟電信信改革(EU Telecoms Reform)之討論,駁回該議案。議會認為,對人民通過網路使用服務和應用而進行的網際網路連接行為,在採取的措施時,應該尊重基本的人權和自由。這些限制權利的手段必須符合民主社會的法規,必須有效、公平和公正,比如通過法院進行審理等。而法國所提之切斷網路連接的三振法案與此原則不符。

美國最高法院肯定電玩同樣受到憲法第一修正案言論自由之保護

  美國最高法院日前針對Brown v. EMA & ESA(即之前的Schwartzenegger v. EMA)一案作出決定,確認加州政府於2005年制定的一項與禁止販賣暴力電玩(violent video games)有關的法律,係違反聯邦憲法第一修正案而無效。   該加州法律係在阿諾史瓦辛格(Arnold Alois Schwarzenegger)擔任加州州長時通過。根據該法規定,禁止販售或出租暴力電玩給未滿18歲的未成年人,且要求暴力電玩應在包裝盒上加註除現行ESRB分級標誌以外的特別標誌,故有侵害憲法第一修正案所保障的言論自由之虞。本案第一審、第二審法院均認定加州「禁止暴力電玩」法案係屬違憲。   而最高法院日前於6月27日以7比2的票數判決,肯定下級審的見解。最高法院認為,電玩(video games)係透過角色、對話、情節和音樂等媒體,傳達其所欲表達的概念,就如同其他呈現言論的方式(如書本、戲劇、電影),皆應受到憲法言論表達自由原則之保護。   因此,對同樣受到憲法保障的遊戲內容表達,只有在有重大(值得保護)的公益須維護時,才能對其加以限制;同時,限制手段亦須通過最嚴格的審查標準(stringent strict scrutiny test)。最高法院認為,本案中加州政府並無法證明有重大(值得保護)的公益存在,且以法律禁止販賣的手段也無法通過審查標準。   如同美國娛樂軟體協會(ESA)CEO Michael D. Gallagher所說,政府不應採取立法禁止的方式,限制遊戲內容的表達自由;反之,美國電玩產業一直以來都遵守一套自願性的分級制度(Entertainment Software Rating Board rating system),藉以提供消費者有關遊戲內容的資訊。這套分級制度已足以協助家長從包裝盒上辨認出遊戲內容,確保未成年人不接觸不適宜的遊戲。   判決出爐後,產業界紛紛表示這是對遊戲產業的一大勝利。本案也證明,即使面臨日新月異科技發展的挑戰,憲法所保障的言論自由表達原則,同樣適用在新興科技的表現媒介。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP