電腦製造大廠HP 於得知其競爭對手Oracle 公司聘用其離職總裁Mark V. Hurd後隨即於加洲法院提起違約(breach of contract)及即將發生盜用營業秘密(threatened misappropriation of trade secrets)之訴訟,但又在短短兩周內雙方達成和解。
HP前總裁Mark V. Hurdy 於八月因被HP董事會指控違反該公司之企業行為規範(code of business conduct)而閃電辭職,隨即受邀接受擔任Oracle 公司共同總裁(Co president) 一職。HP於獲知消息後隨即對Mark V. Hurd提起違約及即將發生盜用營業秘密之訴訟。HP表示其前總裁簽署過保密合約對HP之營業秘密及機密資訊負有保密之義務。HP認為若Mark V. Hurdy任職於其競爭對手Oracle 公司,將對HP造成威脅且將會違反其所負擔之保密義務,因為了於Oracle 公司執行其職務,Mark V. Hurdy必然會使用且洩漏HP之營業秘密及機密資訊。
然於在不到兩周的時間,雙方隨即達成和解。Mark V. Hurdy承諾不會洩漏HP的營業秘密給他的新雇主同時必須放棄346,030 units 的限制性股權(restricted stock units),總價值高達美金4千萬元。
多數觀察家認為HP提起此訴訟案之目的不在阻止其前總裁前往競爭對手工作而主要是在企圖追回Mark V. Hurdy因離職而取得的大量股票權益。
2022年2月14日,美國著作權局(US Copyright Office)所屬之著作權審查委員會(Copyright Review Board),做出一件人工智慧(AI)創作作品不得申請著作權登記之決定,並聲明人類作者是著作權保護的必要前提。 本案申請人Stephen Thaler在2018年首次嘗試為AI「Creativity Machine」創作的藝術作品申請著作權登記,Stephen將Creativity Machine列為作者,並聲明其因擁有該AI而得透過美國著作權法第201條(b)項的受雇著作原則(work for hire)取得前述作品之所有權,且得為此作品申請著作權登記。然而,Stephen提出的申請沒有成功,著作權局認為依著作權法及相關判例,非出自於人類所作之作品不應受著作權保障,而本案AI之創作作品亦無人類的創意性投入或干預。在Stephen提出兩次複審後,著作權審查委員會在2022年做出機關最終決定,除重申僅人類之作品得受著作權保障以外,更進一步表示無權利能力的AI無法簽訂契約,故無受雇著作原則適用之可能。此外,著作權審查委員會亦指出受雇著作原則亦僅能表彰作品的所有權,並非作品是否得以受著作權保障之指標。 Stephen Thaler長年來不斷為AI之創作品爭取法律保護,除上述著作權外,其亦將名為DABUS的AI列為專利發明人,並以此就DABUS之發明在多個國家申請專利,而澳洲聯邦法院在2021年7月做出全球首個認為AI可作為專利發明人的判決。
韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險 資訊工業策進會科技法律研究所 2024年05月15日 創作內容的流通利用是發揮文化經濟力的核心關鍵,但大數據和機器學習技術的快速發展,人工智慧(以下簡稱AI)已成功應用於許多內容生成,大幅推進圖像、影音、文本的識別、處理、分析、甚至生成等創作成本,但從實現生成式AI而建立基礎模型開始,到AI產出物的生成,均存在可能侵權或被侵權的風險。如何衡平考慮著作權人和使用者立場,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統,已成為各國必須思考因應重要課題。 壹、事件摘要 韓國文化體育觀光部的著作權委員會於2024-01-16發布「生成式人工智慧著作權指引(생성형 AI저작권안내서)」[1],這份指引的目的是希望對涉及生成式人工智慧(Generative AI)產出過程中的各方(AI業者、著作權人、AI使用者)提供有關著作權的注意事項。因為韓國文化與著作權主管機關認為,雖然隨著人工智慧技術的迅速發展,在各個領域的應用為經濟和社會利益產生許多助益,但也出現了一個無法預測的環境,影響到著作權產業和創作活動的各個方面;有人將生成式AI用作創作工具,同時也有人擔心生成式AI可能帶來的經濟損失和就業威脅等問題。因此,韓國著作權委員會成立了由學界、法界和技術界專家以及利害關係人組成的「AI-著作權制度改善工作小組」,於2023年2月成立,以審查生成式AI引發的著作權問題並尋找應對方法,並根據該工作小組的討論而編寫提出該指引[2]。 貳、重點說明 該指引從實現生成式AI而建立基礎模型開始,到AI產出物的生成,聚焦於可能引發法律爭議的數據學習和AI產出物生成部分,從現行著作權法的角度說明AI業者、著作權人和AI使用者需要了解的內容。同時為幫助理解,亦納入介紹目前提供的生成式AI案例以及相關的國內外立法趨勢。但該指引特別說明其發布並非為提供其國會正在討論的著作權法修訂方向,而是為了在未來通過進一步的討論、研究和意見徵求過程等,制定出合理的解決方案,並透過制定衡平考慮著作權人和使用者立場的著作權法律制度,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統[3]。 該指引架構主要分為五大主題[4],同時提供問答集與附錄參考資料。五大主題分別為: 一、生成式AI技術與著作權(생성형 AI 기술과 저작권)[5]:從著作權角度看生成式AI技術,說明生成式AI技術的意義和應用案例。 二、對AI經營者的指導(AI 사업자에 대한 안내사항)[6]:包括生成式AI的學習階段的風險、AI產出物的生成階段的風險、建議採取防範措施以區別AI產出物與人類創作物。例如人工智慧業務經營者在提供相關服務時,確保不會產生與現有作品相同或相似的人工智慧輸出;該指引並建議參酌韓國2023 年 5 月提出的《內容產業振興法》修正提案(法案編號2122180)[7]規定,於人工智慧產出內容中應標示係採用人工智慧技術製作[8]。 三、對著作權所有人的指導(저작권자에 대한 안내사항)[9]:在AI學習階段應考慮的事項、防止AI產出物侵犯著作權的建議。該指引特別建議如果著作權人不希望其作品用於人工智慧學習,可以透過適當方式表達反對,以防止作品被用於人工智慧學習;即使著作權人後來得知自己的作品被用於人工智慧學習,亦可適當地採取技術手段來防止,以避免放任使用產生默許的問題。包括使用例如“Glaze”、“Photo Guard”等此類新的防止技術。 四、對AI使用者的指導(AI 이용자에 대한 안내사항)[10]:提醒注意生成式AI使用可能涉及的著作權侵犯情況,並說明在研究、教育、創作等領域的倫理和政策考慮。例如,提醒使用者將現有作品原樣輸入提示視窗或輸入誘導創作相同或相似作品的文字,從而創建與現有作品相同或相似的人工智慧輸出,然後將其發佈到平台上的方法,將存有侵權風險。即使是用人工智慧學習歌手聲音而重新創作或產生現有歌手的歌曲,也會涉及重製或輸入侵權資料的疑慮。同時,對學術研究或投稿,該指引特別建議在論文等中引用生成人工智慧撰寫的文章之前檢查其來源,並標註特定段落是以什麼人工智慧工具與指令所生成。 五、AI產出的著作權登記(AI 산출물과 저작권 등록)[11]:與AI產出物相關的著作權爭議、AI產出物是否可以登記著作權、有關AI產出物著作權登記的國內外案例、登記時應注意的事項等。該指引強調對於不能被視為在任何表達行為中做出人類創造性貢獻的人工智慧輸出,不可能進行著作權註冊。但在人類以創意方式進行修改、增加等“額外附加工作”(추가 작업)的情況下,該額外工作的部分才會被認定為具有著作權屬性,可以進行著作權登記。但是,著作權註冊的效果僅限於附加的部分(추가 작업한 부분)[12]。 另該指引在問答集中主要釋疑相關疑義,例如:為什麼AI的學習會涉及著作權問題?如果無法確定AI學習所使用的作品的權利人,AI業者如何獲得合法使用權?個別提示用於製作AI產出物也受著作權保護嗎?AI產出物是否無法受到著作權法保護?等等韓國文化與著作權主管機關認為常見或已出現爭議的案例,並依其現行法令或見解趨勢,提供主管機關的看法或解答。 此外,為協助其讀者更深入了解人工智慧的原理、爭議與國際發展趨勢,該指引並精要的整理出下述主題,包括:使用人工神經網絡進行學習的過程、生成式AI相關訴訟和著作權爭議、國內外AI相關應對情況、國內廣播公司和新聞機構有關AI學習資料取得的政策條款等補充明,做為該手冊的附錄資料。特別是其所整理之政策條款,顯示韓國新聞媒體已著手因應被用於AI訓練、學習與內容產生的風險。 參、事件評析 綜觀韓國文化體育觀光部的著作權委員會發布「生成式人工智慧著作權指引」可以看出,韓國認為生成式人工智慧在文創領域的議題,目前較為迫切需要處理的是創作人的著作權於AI訓練時被侵權,與創作時運用AI的侵害他人權利的風險,以及AI生成內容的識別與可保護範圍的界定,但促進人工智慧技術發展和相關產業發展,均為韓國關切議題;AI在未來如何衡平考慮著作權人和使用者立場尚待研析建立共識並透過國會立法修正著作權法律制度。 因此,該手冊除提供AI的技術背景說明外,並強調該指引並非修法政策的官方說明,同時以如何降低風險與維護權益的角度,提醒生成式人工智慧(Generative AI)產出過程中的AI經營者、著作權人、AI使用者,提供有關著作權的注意事項與例如防制技術運用、標註AI生成等預防措施。同時為再進一步幫助理解,除風險說明外並以問答方式強化重點提示,並舉相關媒體的AI訓練資料提供政策實例供參考,內容本身精要但附錄細節說明詳盡,但對於未必了解著作權法令的文創領域從業人員而言,內容簡明且建議措施直接具體,值得我國主管機關訂定相關指引之參考。 [1]「生成型人工智慧著作權指引(생성형 AI저작권안내서)」,檔案下載https://www.copyright.or.kr/information-materials/publication/research-report/view.do?brdctsno=52591#(最後瀏覽日:2024/05/25)。 [2]詳前註指引之前言,頁6~7。 [3]同前註。 [4]其中尚有第六主題說明未來的法令整備規劃,此部分較屬政策措施方向,較非指引重點,故本文此處未予列入說明重點。 [5]同前註指引,頁7。 [6]同前註指引,頁15。 [7]去年5月,國會文化體育觀光委員會委員長李相憲提出了《內容產業振興法》的部分修正案,其中包括對人工智慧製作的內容強制貼上人工智慧標籤。該修正案目前正在國民議會審議中。https://www.4th.kr/news/articleView.html?idxno=2056520,(最後瀏覽日:2024/05/25)。 [8]同前註1指引,頁21。 [9]同前註1指引,頁23。 [10] 同前註1指引,頁29。 [11]同前註1指引,頁39。 [12]同前註1指引,頁41。
美國4州及司法部指控資料處理商(Agri Stats)的資料共享行為涉及聯合行為美國明尼蘇達州、加州、北卡羅萊納州及田納西州之檢察總長於2023年11月加入「美國司法部(U.S. Department of Justice, DOJ)在同年9月對於肉品產業資料提供者(Agri Stats, Inc.,以下簡稱Agri Stats)提起的反壟斷訴訟」中,主張Agri Stats透過報告方式將肉品數據資料分享給訂閱服務之肉類加工商,此類資料共享行為削弱了市場競爭關係造成聯合行為,違反了休曼法(Sherman Act)。以下先就此案背景進行說明,以釐清此案象徵意義。 於2023年2月,美國司法部反壟斷部門撤回3項與資訊共享相關的聲明,該3聲明是為了醫療保健產業而發布,其中就資料分享之安全使用方式亦可讓其他產業的資料提供業者評估其資料分享行為是否造成反壟斷行為,惟在目前AI/演算法技術變革之下,利用共享所得之資料反推競爭對手之競爭策略具有可行性,因此當年認為有助於促進競爭之資料共享行為,現在反而有造成聯合行為之可能,故廢棄該3項已過時的聲明。 於2023年9月28日,美國司法部反壟斷部門於明尼蘇達州指控Agri Stats違反休曼法。Agri Stats為專門彙整、分析美國豬肉與家禽(肉雞、火雞)相關商業資料的資料處理商,並將其分析報告提供給具競爭關係的肉品加工商,肉品加工商可透過將Agri Stats分析報告反推以監控/預測出競爭對手之價格、供應量、營運計畫等,並依分析報告建議進行價格調高與減產的行為,而被美國司法部認定為聯合行為。 該訴訟所涉及的肉品加工商占了全美家禽(肉雞與火雞)銷售量的9成以上,豬肉銷售量的8成以上。目前已有前述4州加入該訴訟,法院後續會如何認定,將影響產業間的資料交換作法,也顯現出資料商業化前須先做好資料管理,確保在合規的範圍內進行資料利用,國內廠商可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》對自身資料管理機制進行檢視。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)
美國總統簽署有關監管數位資產的行政命令美國總統於2022年3月9日簽署有關監管數位資產的行政命令(Executive Order on Ensuring Responsible Development of Digital Assets),有鑑於加密貨幣(cryptocurrencies)在內的數位資產於過去大幅成長,自5 年前的 140 億美元市值快速增長到去年11月的 3 兆美元市值,並且有100 多個國家正在探索央行數位貨幣(Central Bank Digital Currency, CBDC)。為使美國政府有整體性的政策以應對加密貨幣市場的風險與數位資產及其基礎技術的潛在利益,該行政命令以消費者與投資者保護、金融穩定、打擊非法融資、增進美國競爭力、普惠金融、負責任的創新為六大關鍵優先事項。 為實現關鍵優先事項,行政命令中所採取的具體措施包含:(1)政府機關應合作來保護美國消費者與企業,以因應不斷成長的數位資產產業與金融市場變化; (2)鼓勵金融監管機構識別與降低數位資產可能帶來的系統性金融風險,制定適當的政策建議以解決監管漏洞;(3)與盟友合作打擊非法金融與國安風險,減輕非法使用數位資產所帶來非法金融與國家安全風險;(4)運用數位資產的技術,促進美國在技術與經濟競爭力上保持領先地位;(5)支持技術創新並確保負責任地開發與使用,同時優先考慮隱私、安全、打擊非法利用等面向;(6)鼓勵聯準會研究CBDC,評估所需的技術基礎設施與容量需求。