本文為「經濟部產業技術司科技專案成果」
使用過Facebook(臉書)上傳照片時,不難發現其內建功能可透過臉部辨識「自動標記」(tag)好友的功能,建議用戶標記照片內的人物,而自從該功能於2011年啟用後,始終存有侵害用戶隱私權的疑慮。本案訴訟自2015年開始,及針對臉書「自動標記」的標籤建議功能爭論。美國於2018年經美國聯邦法院裁定,該功能在未經用戶同意的情況下蒐集並存儲相關使用者的生物特徵資料(biometric data),違反美國伊利諾州(Illinois)生物識別資料隱私法(Biometric Information Privacy Act)。雖然臉書已開始公開與用戶說明其可選擇關閉其識別功能,並針對上述聯邦法院判決提出上訴,卻仍於2019年8月敗訴。因此臉書同意以5.5億美元和解,用於支付伊利諾州的用戶(符合條件的)及訴訟相關費用。
日本修訂《數位行政推動法》,完善行政機關雲端服務之使用環境日本自2002年制定《活用資訊通信技術推動行政相關法律》(情報通信技術を活用した行政の推進等に関する法律,現簡稱《數位行政推動法》)以來,已歷經多次修正,旨在因應國家面臨數位轉型時代,持續調整法規以促使資訊通信技術有效應用於行政領域,並提升國家行政效率、改善國民使用政府服務之便利性為目的。日本數位廳(デジタル庁)於2024年12月9日向日本國會提出修正案,經通過後已於2025年3月8日開始施行。關於《數位行政推動法》本次修正重點簡要如下: 1. 增訂第18條第1項、第2項,要求中央(国家)與地方政府(地方公共団体)共用雲端服務環境之規章制度: 透過立法要求中央(国家)應採取相關必要措施,使地方政府(地方公共団体)能共用雲端服務,並促進公共資訊系統的有效利用,以及完善資訊系統之開發與維運,據以強化資訊共享基礎。 2. 增訂第18條第3項、第4項,使行政機關利用雲端服務之責任明確化: 明訂各行政機關,應提供行政事務專用的雲端服務,並開發符合服務需求之公共資訊系統,據以有效提升政府公共服務品質。 3. 增訂第19條第1項至第3項,要求中央(国家)與地方政府(地方公共団体)建立共同使用雲端服務之相關費用規章: 有關雲端服務提供者(Cloud Service Provider,簡稱CSP),包含AWS、Google Cloud、Microsoft Azure等,與行政機關簽訂相關之雲端服務合約,若地方或民間因使用同一雲端服務而須另支付CSP雲端使用費時,為強化公部門雲端服務基礎環境治理,依本條規定授權先由日本各府省廳、地方政府、行政法人等先向數位廳支付雲端服務使用費,再由數位廳統籌後向CSP支付款項,同時由數位廳訂下規格要求,以利公部門採購作業,促使行政機關與CSP之間的合約、雲端服務品質等得到一元化管理。 日本為了促進國家之行政事務能更有效率地推展,透過立法要求中央與地方間之行政機關應完善雲端服務基礎環境供行政事務專用,與建立相應之費用規章,以強化機關間資訊共享。不僅如此,依據本次修正之第18條「應採取必要措施」,其未來所採用之行政規則與具體實踐方式,如何有效提升行政資訊系統效率,仍可持續關注其發展情況。日本藉由持續完善法規與操作機制,打造中央與地方能夠共享、互通的公務體系雲端服務環境,提升人民使用數位化公共服務品質之作法,值得我國未來參考借鏡。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
美國聯邦最高法院於Michigan v. EPA案中認定減碳措施需先考量成本效益